171 research outputs found

    Combined treatment with dipeptidyl peptidase 4 (DPP4) inhibitor sitagliptin and elemental diets reduced indomethacin-induced intestinal injury in rats via the increase of mucosal glucagon-like peptide-2 concentration.

    Get PDF
    The gut incretin glucagon-like peptide-1 (GLP-1) and the intestinotropic hormone GLP-2 are released from enteroendocrine L cells in response to ingested nutrients. Treatment with an exogenous GLP-2 analogue increases intestinal villous mass and prevents intestinal injury. Since GLP-2 is rapidly degraded by dipeptidyl peptidase 4 (DPP4), DPP4 inhibition may be an effective treatment for intestinal ulcers. We measured mRNA expression and DPP enzymatic activity in intestinal segments. Mucosal DPP activity and GLP concentrations were measured after administration of the DPP4 inhibitor sitagliptin (STG). Small intestinal ulcers were induced by indomethacin (IM) injection. STG was given before IM treatment, or orally administered after IM treatment with or without an elemental diet (ED). DPP4 mRNA expression and enzymatic activity were high in the jejunum and ileum. STG dose-dependently suppressed ileal mucosal enzyme activity. Treatment with STG prior to IM reduced small intestinal ulcer scores. Combined treatment with STG and ED accelerated intestinal ulcer healing, accompanied by increased mucosal GLP-2 concentrations. The reduction of ulcers by ED and STG was reversed by co-administration of the GLP-2 receptor antagonist. DPP4 inhibition combined with luminal nutrients, which up-regulate mucosal concentrations of GLP-2, may be an effective therapy for the treatment of small intestinal ulcers

    Safety outcomes during pediatric GH therapy: final results from the prospective GeNeSIS observational program

    Get PDF
    CONTEXT: Safety concerns regarding premature mortality, diabetes, neoplasia and cerebrovascular disease in association with growth hormone (GH) therapy have been raised. OBJECTIVE: To assess incidence of key safety outcomes. DESIGN: Prospective, multinational, observational study (1999-2015). SETTING: 22,311 GH-treated children from 827 investigative sites in 30 countries. PATIENTS: Children with growth disorders. INTERVENTIONS: GH treatment. MAIN OUTCOME MEASURES: Standardized mortality (SMR) and incidence (SIR) ratios with 95% confidence intervals (CI) for mortality, diabetes, and primary cancer, using general population registries. RESULTS: Predominant short stature diagnoses were GH deficiency (63%), idiopathic short stature (13%), and Turner syndrome (8%), with mean±SD follow-up of 4.2±3.2 years (∼92,000 person-years [PY]). Forty-two deaths occurred in patients with follow-up, with SMR (95% CI) of 0.61 (0.44-0.82); the SMR was elevated for patients with cancer-related organic GH deficiency (5.87 [3.21-9.85]). Based on 18 cases, Type 2 diabetes (T2DM) risk was elevated (SIR 3.77 [2.24-5.96]), but 72% had risk factors. In patients without cancer history, 14 primary cancers were observed (SIR 0.71 [0.39-1.20]). Second neoplasms occurred in 31/622 (5.0%) cancer survivors (10.7 [7.5-15.2] cases/1000 PY), and intracranial tumor recurrences in 67/823 (8.1%) tumor survivors (16.9 [13.3-21.5] cases/1000 PY). All 3 hemorrhagic stroke cases had risk factors. CONCLUSIONS: GeNeSIS data support the favourable safety profile of pediatric GH treatment. Overall risk for death or primary cancer was not elevated in GH-treated children, and no hemorrhagic strokes occurred in patients without risk factors. T2DM incidence was elevated compared to the general population, but most cases had diabetes risk factors

    Air pollution and the incidence of ischaemic and haemorrhagic stroke in the South London Stroke Register: a case-cross-over analysis.

    Get PDF
    BACKGROUND: Few European studies investigating associations between short-term exposure to air pollution and incident stroke have considered stroke subtypes. Using information from the South London Stroke Register for 2005-2012, we investigated associations between daily concentrations of gaseous and particulate air pollutants and incident stroke subtypes in an ethnically diverse area of London, UK. METHODS: Modelled daily pollutant concentrations based on a combination of measurements and dispersion modelling were linked at postcode level to incident stroke events stratified by haemorrhagic and ischaemic subtypes. The data were analysed using a time-stratified case-cross-over approach. Conditional logistic regression models included natural cubic splines for daily mean temperature and daily mean relative humidity, a binary term for public holidays and a sine-cosine annual cycle. Of primary interest were same day mean concentrations of particulate matter <2.5 and <10 µm in diameter (PM2.5, PM10), ozone (O3), nitrogen dioxide (NO2) and NO2+nitrogen oxide (NOX). RESULTS: Our analysis was based on 1758 incident strokes (1311 were ischaemic and 256 were haemorrhagic). We found no evidence of an association between all stroke or ischaemic stroke and same day exposure to PM2.5, PM10, O3, NO2 or NOX. For haemorrhagic stroke, we found a negative association with PM10 suggestive of a 14.6% (95% CI 0.7% to 26.5%) fall in risk per 10 µg/m(3) increase in pollutant. CONCLUSIONS: Using data from the South London Stroke Register, we found no evidence of a positive association between outdoor air pollution and incident stroke or its subtypes. These results, though in contrast to recent meta-analyses, are not inconsistent with the mixed findings of other UK studies

    Purification of chicken carbonic anhydrase isozyme-III (CA-III) and its measurement in White Leghorn chickens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The developmental profile of chicken carbonic anhydrase-III (CA-III) blood levels has not been previously determined or reported. We isolated CA-III from chicken muscle and investigated age-related changes in the levels of CA-III in blood.</p> <p>Methods</p> <p>CA-III was purified from chicken muscle. The levels of CA-III in plasma and erythrocytes from 278 female chickens (aged 1-93 weeks) and 68 male chickens (aged 3-59 weeks) were determined by ELISA.</p> <p>Results</p> <p>The mean level of CA-III in female chicken erythrocytes (1 week old) was 4.6 μg/g of Hb, and the CA-III level did not change until 16 weeks of age. The level then increased until 63 weeks of age (11.8 μg/g of Hb), decreased to 4.7 μg/g of Hb at 73 weeks of age, and increased again until 93 weeks of age (8.6 μg/g of Hb). The mean level of CA-III in erythrocytes from male chickens (3 weeks old) was 2.4 μg/g of Hb, and this level remained steady until 59 weeks of age. The mean plasma level of CA-III in 1-week-old female chickens was 60 ng/mL, and this level was increased at 3 weeks of age (141 ng/mL) and then remained steady until 80 weeks of age (122 ng/mL). The mean plasma level of CA-III in 3-week-old male chickens was 58 ng/mL, and this level remained steady until 59 weeks of age.</p> <p>Conclusion</p> <p>We observed both developmental changes and sex differences in CA-III concentrations in White Leghorn (WL) chicken erythrocytes and plasma. Simple linear regression analysis showed a significant association between the erythrocyte CA-III level and egg-laying rate in WL-chickens 16-63 weeks of age (p < 0.01).</p

    Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis

    Get PDF
    Heterozygous coding mutations in the INS gene that encodes preproinsulin were recently shown to be an important cause of permanent neonatal diabetes. These dominantly acting mutations prevent normal folding of proinsulin, which leads to beta-cell death through endoplasmic reticulum stress and apoptosis. We now report 10 different recessive INS mutations in 15 probands with neonatal diabetes. Functional studies showed that recessive mutations resulted in diabetes because of decreased insulin biosynthesis through distinct mechanisms, including gene deletion, lack of the translation initiation signal, and altered mRNA stability because of the disruption of a polyadenylation signal. A subset of recessive mutations caused abnormal INS transcription, including the deletion of the C1 and E1 cis regulatory elements, or three different single base-pair substitutions in a CC dinucleotide sequence located between E1 and A1 elements. In keeping with an earlier and more severe beta-cell defect, patients with recessive INS mutations had a lower birth weight (-3.2 SD score vs. -2.0 SD score) and were diagnosed earlier (median 1 week vs. 10 weeks) compared to those with dominant INS mutations. Mutations in the insulin gene can therefore result in neonatal diabetes as a result of two contrasting pathogenic mechanisms. Moreover, the recessively inherited mutations provide a genetic demonstration of the essential role of multiple sequence elements that regulate the biosynthesis of insulin in man

    Chromosome-wide DNA methylation analysis predicts human tissue-specific X inactivation

    Get PDF
    X-chromosome inactivation (XCI) results in the differential marking of the active and inactive X with epigenetic modifications including DNA methylation. Consistent with the previous studies showing that CpG island-containing promoters of genes subject to XCI are approximately 50% methylated in females and unmethylated in males while genes which escape XCI are unmethylated in both sexes; our chromosome-wide (Methylated DNA ImmunoPrecipitation) and promoter-targeted methylation analyses (Illumina Infinium HumanMethylation27 array) showed the largest methylation difference (D = 0.12, p < 2.2 E−16) between male and female blood at X-linked CpG islands promoters. We used the methylation differences between males and females to predict XCI statuses in blood and found that 81% had the same XCI status as previously determined using expression data. Most genes (83%) showed the same XCI status across tissues (blood, fetal: muscle, kidney and nerual); however, the methylation of a subset of genes predicted different XCI statuses in different tissues. Using previously published expression data the effect of transcription on gene-body methylation was investigated and while X-linked introns of highly expressed genes were more methylated than the introns of lowly expressed genes, exonic methylation did not differ based on expression level. We conclude that the XCI status predicted using methylation of X-linked promoters with CpG islands was usually the same as determined by expression analysis and that 12% of X-linked genes examined show tissue-specific XCI whereby a gene has a different XCI status in at least one of the four tissues examined

    Case report: maternal mosaicism resulting in inheritance of a novel GATA6 mutation causing pancreatic agenesis and neonatal diabetes mellitus.

    Get PDF
    Haploinsufficiency of the GATA6 transcription factor gene was recently found to be the most common cause of pancreatic agenesis, a rare cause of neonatal diabetes mellitus. Although most cases are de novo, we describe three siblings with inherited GATA6 haploinsufficiency and the rare finding of parental mosaicism.This article is freely available via Open Access. Click on the Additional Link above to access the full-text via the publisher's site
    corecore