405 research outputs found

    Forecasting Longitudinal Changes in Oropharyngeal Tumor Volume, Position, and Morphology during Image-Guided Radiation Therapy

    Get PDF
    The purpose of this work was to generate, evaluate, and compare models that predict longitudinal changes in oropharyngeal tumor volume, position, and morphology during radiation therapy. One volume, one position, and two morphology (size, shape, and position) feature vectors were used to describe 35 oropharyngeal gross tumor volumes (GTVs) during radiation therapy. The two morphology feature vectors comprised the coordinates of the GTV centroids and one of two shape descriptors. One shape descriptor was based on radial distances between the GTV centroid and 614 surface landmarks. The other was based on a spherical harmonic decomposition of these distances. For a training set of patients, the changes in feature vectors during treatment were represented by static, linear, mean, and median models along with two models derived from principal component analysis. The error of these models in forecasting the GTV volume, position, and morphology of a test patient was evaluated using leave-one-out cross-validation, and the accuracy of the models were compared with Wilcoxon signed-rank tests. The effect on accuracy of adjusting model parameters at 1, 2, 3, or 5 time points (“adjustment points”) was also evaluated. Including a single adjustment point improved the accuracy in forecasting the volume and position by 12.9% – 30.0% and 27.0% – 34.1%, respectively. For the two morphology feature vectors, a single adjustment point improved accuracy by 27.5 – 33.8% and 28.6% – 33.0%. Additional adjustment points further improved accuracy, but with diminishing effects. Non-static models demonstrated greater accuracy than static models with equal numbers of adjustment points. These improvements were small, except for models of the volume (54.2% – 58.0%) for which they were greater than those of adding an adjustment point. For the other three feature vectors, the effect of including an adjustment point was greater than that of selecting a non-static model. Tumor volume, position, and morphology were predicted at each treatment fraction using models that include information from prior patients and/or prior treatment fractions. The predicted tumor morphology can be compared with patient anatomy or dose distributions, thereby providing a more complete depiction of treatment response, influencing clinical decision making, and opening the possibility of anticipatory re-planning

    The Galactic Exoplanet Survey Telescope (GEST)

    Full text link
    The Galactic Exoplanet Survey Telescope (GEST) will observe a 2 square degree field in the Galactic bulge to search for extra-solar planets using a gravitational lensing technique. This gravitational lensing technique is the only method employing currently available technology that can detect Earth-mass planets at high signal-to-noise, and can measure the frequency of terrestrial planets as a function of Galactic position. GEST's sensitivity extends down to the mass of Mars, and it can detect hundreds of terrestrial planets with semi-major axes ranging from 0.7 AU to infinity. GEST will be the first truly comprehensive survey of the Galaxy for planets like those in our own Solar System.Comment: 17 pages with 13 figures, to be published in Proc. SPIE vol 4854, "Future EUV-UV and Visible Space Astrophysics Missions and Instrumentation

    Intravascular ultrasound imaging: In vitro validation and pathologic correlation

    Get PDF
    AbstractIntravascuiar ultrasound imaging is a new method in which high resolution images of the arterial wall are obtained with use of a catheter placed within an artery. An in vitro Plexiglas well model was used to validate measurements of the luminal area, and an excellent correlation was obtained. One hundred thirty segments of fresh peripheral arteries underwent ultrasound imaging and the findings were compared with the corresponding histopathologic sections. luminal areas determined with ultrasound imaging correlated well with those calculated from microscopic slides (r = 0.98).Three patterns were identified on the ultrasound images: 1) distinct interface between media and adventitia, 2) indistinct interface between media and adventitia but different echo density layers, and 3) diffuse homogeneous appearance. The types of patterns depended on the relative composition of the and adventitia. Calcification of intimal plaque obscured underlying structures. Atherosclerotic plaque was readily visualized but could not always be differentiated from the underlying media

    Association between Coagulation Profile and Clinical Outcome in Children with SARS-CoV-2 Infection or MIS-C: A Multicenter Cross-Sectional Study

    Get PDF
    Limited data on the coagulation profile in children affected by the SARS-CoV-2 infection are available. We aimed to evaluate the role of d-dimers as predictors of poor outcomes in a pediatric population affected by the SARS-CoV-2 infection or multisystem inflammatory syndrome (MIS-C). We performed a retrospective cross-sectional multicenter study. Data from four different centers were collected. Laboratory tests, when performed, were collected at the time of diagnosis, and 24, 48, 72, 96, 120 and beyond 120 h from diagnosis; blood counts with formula, an international normalized ratio (INR), activated partial thromboplastin time (aPTT), D-dimers and fibrinogen values were collected. Data regarding clinical history, management and outcome of the patients were also collected. Three hundred sixteen patients with a median age of 3.93 years (IQR 0.62–10.7) diagnosed with COVID-19 or MIS-C were enrolled. Fifty-eight patients (18.3%) showed a severe clinical outcome, 13 (4.1%) developed sequelae and 3 (0.9%) died. The univariate analysis showed that age, high D-dimer values, hyperfibrinogenemia, INR and aPTT elongation, and low platelet count were associated with an increased risk of pediatric intensive care unit (PICU) admission (p < 0.01). Three multivariate logistic regressions showed that a d-dimer level increase was associated with a higher risk of PICU admission. This study shows that D-dimer values play an important role in predicting the more severe spectrum of the SARS-CoV-2 infection, and was higher also in those that developed sequelae, including long COVID-19

    MOA 2003-BLG-37: A Bulge Jerk-Parallax Microlens Degeneracy

    Full text link
    We analyze the Galactic bulge microlensing event MOA-2003-BLG-37. Although the Einstein timescale is relatively short, t_e=43 days, the lightcurve displays deviations consistent with parallax effects due to the Earth's accelerated motion. We show that the chi^2 surface has four distinct local minima that are induced by the ``jerk-parallax'' degeneracy, with pairs of solutions having projected Einstein radii, \tilde r_e = 1.76 AU and 1.28 AU, respectively. This is the second event displaying such a degeneracy and the first toward the Galactic bulge. For both events, the jerk-parallax formalism accurately describes the offsets between the different solutions, giving hope that when extra solutions exist in future events, they can easily be found. However, the morphologies of the chi^2 surfaces for the two events are quite different, implying that much remains to be understood about this degeneracy.Comment: 19 pages, 3 figures, 1 table, ApJ, in press, 1 July 200

    A Jovian-mass Planet in Microlensing Event OGLE-2005-BLG-071

    Full text link
    We report the discovery of a several-Jupiter mass planetary companion to the primary lens star in microlensing event OGLE-2005-BLG-071. Precise (<1%) photometry at the peak of the event yields an extremely high signal-to-noise ratio detection of a deviation from the light curve expected from an isolated lens. The planetary character of this deviation is easily and unambiguously discernible from the gross features of the light curve. Detailed modeling yields a tightly-constrained planet-star mass ratio of q=m_p/M=0.0071+/-0.0003. This is the second robust detection of a planet with microlensing, demonstrating that the technique itself is viable and that planets are not rare in the systems probed by microlensing, which typically lie several kpc toward the Galactic center.Comment: 4 pages. Minor changes. Accepted for publication in ApJ Letter
    • 

    corecore