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ABSTRACT 

The purpose of this work was to generate, evaluate, and compare models that predict 

longitudinal changes in oropharyngeal tumor volume, position, and morphology during 

radiation therapy. 

One volume, one position, and two morphology (size, shape, and position) feature 

vectors were used to describe 35 oropharyngeal gross tumor volumes (GTVs) during 

radiation therapy. The two morphology feature vectors comprised the coordinates of the 

GTV centroids and one of two shape descriptors. One shape descriptor was based on radial 

distances between the GTV centroid and 614 surface landmarks. The other was based on a 

spherical harmonic decomposition of these distances. For a training set of patients, the 

changes in feature vectors during treatment were represented by static, linear, mean, and 

median models along with two models derived from principal component analysis. The error 

of these models in forecasting the GTV volume, position, and morphology of a test patient 

was evaluated using leave-one-out cross-validation, and the accuracy of the models were 

compared with Wilcoxon signed-rank tests. The effect on accuracy of adjusting model 

parameters at 1, 2, 3, or 5 time points (“adjustment points”) was also evaluated. 

Including a single adjustment point improved the accuracy in forecasting the volume and 

position by 12.9% – 30.0% and 27.0% – 34.1%, respectively. For the two morphology 

feature vectors, a single adjustment point improved accuracy by 27.5 – 33.8% and 28.6% – 

33.0%. Additional adjustment points further improved accuracy, but with diminishing 

effects. Non-static models demonstrated greater accuracy than static models with equal 

numbers of adjustment points. These improvements were small, except for models of the 

volume (54.2% – 58.0%) for which they were greater than those of adding an adjustment 

point. For the other three feature vectors, the effect of including an adjustment point was 

greater than that of selecting a non-static model. 

Tumor volume, position, and morphology were predicted at each treatment fraction 

using models that include information from prior patients and/or prior treatment fractions. 

The predicted tumor morphology can be compared with patient anatomy or dose 

distributions, thereby providing a more complete depiction of treatment response, influencing 

clinical decision making, and opening the possibility of anticipatory re-planning. 
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Chapter 1 

INTRODUCTION 

Cancer of the head and neck comprises malignant disease of the nasal cavity, oral   

cavity, pharynx, larynx, and sinuses. There were 53,640 new cases of head and neck cancer 

(3.2% of all new cancer cases) along with 11,520 deaths (2.0% of all cancer deaths) 

estimated for 2013 in the US.
1
 These malignancies are predominantly squamous cell 

carcinoma arising in the epithelium of the upper aerodigestive tract.
2
 Primary risk factors 

include alcohol and tobacco (implicated in 75% of cases) which also exhibit a synergistic 

effect.
3-5

 The role of human papillomavirus (HPV) – particularly type 16 and, to an extent, 

type 18 – as an additional risk factor has become clear, implicated in 25% to 35% of cases.
6, 7

 

A quarter of the new head and neck cancer cases and a fifth of the associated deaths are 

attributable to disease of the oropharynx, primarily of the tonsils and the base of tongue.
1
 

Two-thirds of these present at an advanced stage, though relatively few present with distant 

metastasis.
1
 Unlike disease staging for other head and neck cancers which depends on the 

extent of disease involvement, staging for cancers of the oropharynx is largely based on the 

physical dimensions of the observed tumor. Five-year survival rates for localized, regional, 

and distant malignant disease of the oropharynx are 82.7%, 59.2%, and 36.3%, respectively.
1
 

Surgery and radiation remain the principal modalities for treating oropharyngeal cancer, 

though systemic therapies concurrent with radiation provide an additional benefit.
8-15

 

Radiation therapy is generally delivered with external, megavoltage, x-ray beams. 

Commonly, approximately 2 Gy fractional doses are delivered for several weeks to achieve a 

total dose of 60 Gy to 70 Gy depending on disease stage.
6
 Hyperfractionated and accelerated 

fractionation schemes have also been explored.
6, 10, 11, 13-15

 In addition, interstitial radioactive 
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implants have been used to provide a brachytherapy boost for tumors, primarily those of the 

base of tongue.
6
 

Treatment plans for fractionated radiation therapy are typically generated based on the 

patient anatomy as depicted in a single, pre-treatment computed tomography (CT) image set. 

Linear accelerator beam parameters that produce the optimal dose distribution on this 

planning CT are used to administer the radiation at each treatment fraction thereafter. 

However, anatomic changes and motion, along with limited patient positioning 

reproducibility, cause the radiation to be administered to anatomy dissimilar to that of the 

planning CT. These anatomic variations affect the dose distribution delivered to the patient, 

potentially compromising the therapeutic benefit and clinical safety of the treatment. 

The uncertainty regarding variations in patient anatomy and positioning can manifest in 

multiple forms. Instances of flexible bony anatomy and deformable soft tissue anatomy may 

often be considered random. Similarly, the precision with which a patient is positioned for 

each treatment fraction is subject to random error. Governed by chance, the effect of these 

random variations between each treatment fraction is to blur the intended dose distribution, 

flattening steep dose gradients characteristic of highly-conformal, intensity-modulated 

radiation therapy treatment plans.
16, 17

 

The planning CT is also subject to random variations. In this case however, the particular 

anatomic configuration is used to establish a baseline. Any discrepancy between the value of 

a random variable observed during acquisition of the planning CT and its average value 

during treatment perpetuates throughout treatment as a systematic variation. Unlike the 

blurring effect of random variations occurring between fractions, systematic variations shift 

the delivered dose distribution relative to the intended one. This shift is particularly 
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consequential in regions with steep dose gradients where even a small shift could lead to a 

large change in the delivered dose. 

Other anatomic variations are correlated among treatment fractions and are thus 

inherently non-random. These include longitudinal trends in anatomic changes that progress 

during treatment, such as changes in the volume and position of the tumor and other organs.
18

 

Longitudinal changes may be due directly to the treatment, or in conjunction with other 

changes like weight loss or the resolution of edema or other post-surgical effects. 

The clinical implications of delivering an unintended radiation dose distribution have led 

to extensive research to quantify the uncertainties associated with these variations. Numerous 

uncertainty estimates have been derived using nearly as many methodologies. Nonetheless, 

random and systematic variations between treatment fractions are typically 1 mm to 3 mm in 

magnitude, while those occurring within a single fraction are less than 2 mm.
19-28

 Castadot 

reviewed literature describing the dosimetric consequences of these uncertainties, such as a 

decrease in target dose and an increase in normal tissue dose.
29

 

In order to maintain the intended dose distribution, considerable effort is made to reduce 

the magnitude of these variations. Strategies include immobilizing the patient, adding 

geometric margins around tumors during treatment planning, imaging the patient prior to 

each treatment fraction, and adjusting the radiation therapy plan during the course of 

treatment. The latter strategy is referred to as adaptive radiation therapy (ART). It involves 

re-imaging the patient and re-optimizing the treatment plan in order to tailor a new plan to 

the longitudinal changes in patient anatomy. 

Developed by Yan et al.,
30

 the workflow and clinical application of ART have been 

described and assessed by many others.
31-36

 However, practical considerations have restricted 
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the clinical utility of ART. In principle, an image of the patient acquired before each 

treatment fraction could be used to generate a new treatment plan to be administered 

exclusively on that fraction. This workflow would promote confidence in the fidelity of the 

delivered dose distribution to the intended one. However, re-imaging and re-optimizing 

frequently during treatment currently remains prohibitively time and computationally 

intensive. As a result, most implementations of ART are limited to one or a few treatment 

plan adjustments. Another limitation, closely related to the limited number of adaptive 

adjustments, is that adjustments are inherently reactionary. Unless achieved in real time, 

these interventions necessarily lag behind their impetus. When only a small number of 

treatment plan adjustments are made, the time discrepancy between the re-optimization of a 

new plan and its administration can grow to days or weeks. Consequences of this lag may be 

diminished by anticipating anatomic changes. A predictive model of longitudinal changes in 

anatomy could lead to treatment plan adjustments and interventions less subject to the effects 

of these trends. 

Anticipating changes in descriptive anatomic variables has been considered previously. 

Predictions have been made regarding tumor volume, position, and surface area.
37-40

 In 

addition, contour slice area and curvature,
41, 42 central axis position,

43
 and mathematical 

notions of sphericity
44

 and eccentricity
45

 have also been used to describe radiation therapy 

targets and organs at risk. However, the application of conventional predictive models is 

usually restricted by at least one of the following two limitations: 

(i) Predictive models often only describe the overall change in the 

descriptor variable. 

(ii) Descriptor variables are typically reductive and non-generative. 
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The first of these limitations treats the response of the patient as a state function 

specified according to its initial and final state. This concept ignores clinical insight that 

might be garnered from the manner in which the anatomy changes, beyond that available 

from the total change. A more complete description is to consider longitudinal anatomic 

changes as a time series representing a continuous function. This functional description can 

resolve differences in the response of two patients who demonstrate similar total changes, but 

have responded at different times and at different rates. Nuances in treatment response could 

reflect differences in disease progression, histology, microenvironment, or resistance. The 

manner in which the anatomy changes also affects the radiation dose to nearby normal tissues 

and warrants varied implementation of ART. 

The second of the two limitations restricts the utility of predictive models. Reductive (or 

non-generative) descriptors are those that irreversibly discard information, typically for the 

sake of simplicity and/or efficiency. The lost information, however, renders it impossible to 

specifically reconstruct the original object from the descriptor. This limits the application of 

these models compared to models based on non-reductive, generative descriptors. 

Challenges associated with retaining sufficient information for a descriptor to be 

generative include higher variable dimensionality and greater analytic complexity. As a 

result, successful analysis requires increased data sample sizes and computational resources. 

Nonetheless, uses for generative descriptors abound. A number of them are described in 

reviews by Iyer et al.
46

 and Tangelder et al.
47

 

When applied to anatomy, generative models retain information regarding the 

morphology (size, shape, and position) of anatomic features. Applications of such descriptors 

in medicine include neurosurgery
48

 and computational neuroanatomy,
49

 along with computer-
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aided diagnosis of breast cancer.
50, 51

 In radiation therapy, a number of authors have used 

various reductive and generative descriptors as shape models representing random anatomic 

variations. Generative descriptors in radiation therapy included biomechanical finite element 

models,
38, 52, 53

 deformable image registration derived vector models,
54

 and anatomic 

landmark based statistical models.
55-59

 These models are not used to consider longitudinal 

anatomic changes, but only describe the magnitude of random tissue deformation based on a 

series of patient images acquired over time. The images are considered depictions of random 

instances of anatomy, but also depict the effects of longitudinal changes. Misattributing 

longitudinal changes in anatomy to random variation not only misrepresents the magnitude of 

the latter, but forfeits the utility of recognizing and understanding the former.  

In radiation therapy, a predictive model unrestricted by limitations (i) and (ii) can 

potentially anticipate the manner in which a patient’s tumor or normal anatomy changes 

during treatment. Such a model of morphology has implications for the treatment 

management of individual patients as well as radiation therapy research studies. Prior to the 

onset of a particular patient’s treatment, a predictive morphology model may be employed to 

forecast his or her anatomic response to the treatment. This information could be used by 

clinicians to make better informed decisions regarding the number and timing of treatment 

plan adjustments or other interventions. A predictive model based on a generative descriptor 

also allows the forecast morphology to be depicted anatomically. As a result, clinicians can 

assess the proximity of the target to organs at risk or consider its position within an intended 

dose distribution. This information may influence geometric and dosimetric decisions during 

the treatment planning process. The utility of a predictive, generative model continues during 

the patient’s treatment. The model might be used to determine if a particular patient is 
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responding as expected considering similar patients. If he or she is not, adjustments to the 

treatment or other interventions can be considered. After completion of a patient’s therapy, 

his or her response may be compiled with those of others to investigate patterns and 

correlations with additional patient characteristics. This information could advance 

understanding of patient-specific treatment responses, leading to improved treatment 

management. 

This work focuses on predictive models unrestricted by limitations (i) and (ii). Models 

based on the reductive descriptors of tumor volume and centroid position, as well as some 

based on generative descriptions of tumor morphology, are used to describe the dynamic 

changes of the tumor during the course of treatment. The predictive accuracies of numerous 

models are evaluated. The models are then compared and the potential benefit of using those 

of a certain form and complexity is determined. This purpose is divided into four specific 

aims designed to support a principal hypothesis. 

The remainder of this dissertation is organized as follows: Chapter 2 presents the 

principal hypothesis and specific aims of the work; Chapter 3 describes the methodology 

used to conduct the work for each of the four specific aims; Chapter 4 provides figures and 

summaries of the results of the methodology; Chapter 5 features discussion of these results; 

and Chapter 6 presents the conclusions of this work. 
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Chapter 2 

PRINCIPAL HYPOTHESIS AND SPECIFIC AIMS 

Principal Hypothesis: 

Longitudinal trends in the volume, position, and morphology of head and neck tumors can be 

derived from previous patients and applied to reduce the error in forecasting these variables 

during the treatment of a new patient by 10% compared to the original planning CT. 

 

Specific Aim 1: To generate, evaluate, and compare models that predict the longitudinal 

changes in GTV volume and GTV centroid position throughout the course of radiation 

therapy, and to discern the effect of the frequency with which model parameters are adjusted. 

 

Hypothesis: Models of the longitudinal changes in GTV volume and GTV centroid position 

with model parameter adjustments can reduce the error in forecasting these variables during 

treatment of a new patient by 10% compared to models based exclusively on the planning 

CT. 

 

Specific Aim 2: To generate, evaluate, and compare models that predict the longitudinal 

changes in GTV morphology throughout the course of radiation therapy, and to discern the 

effect of the frequency with which model parameters are adjusted. 

 

Hypothesis: Models of the longitudinal changes in GTV morphology with model parameter 

adjustments can reduce the error in forecasting this variable during treatment of a new patient 

by 10% compared to models based exclusively on the planning CT. 
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Specific Aim 3: To generate, evaluate, and compare models that predict the longitudinal 

changes in GTV volume and GTV centroid position throughout the course of radiation 

therapy, and to discern the effect of the type of model selected. 

 

Hypothesis: Non-static models of the longitudinal changes in GTV volume and GTV centroid 

position of previous patients can reduce the error in forecasting these variables during 

treatment of a new patient by 10% compared to the initial values of the planning CT. 

 

Specific Aim 4: To generate, evaluate, and compare models that predict the longitudinal 

changes in GTV morphology throughout the course of radiation therapy, and to discern the 

effect of the type of model selected. 

 

Hypothesis: Non-static models of the longitudinal changes in GTV morphology of previous 

patients can reduce the error in forecasting this variable during treatment of a new patient by 

10% compared to the initial values of the planning CT. 

 

Table I: Illustration of the relationship between the four Specific Aims. 

Specific Aim Formula: 
To generate, evaluate, and 
compare models that predict 
the longitudinal changes in  A 
throughout the course of 
radiation therapy, and to 
discern the effect of    B

     A

…GTV volume and 
GTV centroid position… 

…GTV morphology… 

 B

…the frequency with which 
model parameters 
are adjusted. 

Specific Aim 1 Specific Aim 2 

…the type of 
model selected. 

Specific Aim 3 Specific Aim 4 
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Chapter 3 

METHODOLOGY 

3.1. Instances of the gross tumor volume and deformable image registration 

Nineteen patients previously treated for oropharyngeal cancer were randomly selected 

from an adaptive radiation therapy protocol described by Schwartz et al.
36

 Patient selection 

criteria included stage III, IVa, or IVb squamous cell carcinoma of the oropharynx according 

to the American Joint Committee on Cancer or a status of 0 – 2 according to the Eastern 

Cooperative Oncology Group. Patient information is presented in Table II. The prescription 

dose for each patient was 69.96 Gy or 70.00 Gy delivered in 2.12 Gy or 2.00 Gy fractions. 

Per the clinical protocol, patients had received daily CT-on-rails imaging for image-guided 

alignment. The CT-on-rails system is depicted in Figure 1. It consists of a 2100 EX linear 

accelerator (Varian Medical Systems, Palo Alto, CA) and a SmartGantry CT (GE Healthcare, 

Waekesha, WI) which share a single patient couch. At each treatment fraction, prior to the 

delivery of radiation, the patient was positioned on the couch and imaged by the CT. The 

couch was then rotated 180 degrees into position with respect to the linear accelerator. The 

daily CT image set that had just been acquired was then used to calculate any necessary 

patient positioning corrections using the C2 vertebral body as the alignment target. Once the 

patient was properly positioned, the radiation was delivered. Precision of the CT-on-rails 

system is described by Court et al.
60
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Table II: Patient information 

Patient 
Age 

(Years) 
Disease Site 

Disease 
Stage* 

Concurrent 
Systemic 
Therapy 

1 62 Base of Tongue      T1 N2A     Cisplatin 
2 41 Tonsil      T3 N2B     Cisplatin & 

    Carboplatin 
3 53 Tonsil      T2 N2C     Cetuximab 
4 56 Base of Tongue      T3 N2C     Cisplatin, 

    Carboplatin, 
    & Paclitaxel 

5 57 Base of Tongue      T3 N2A     Cisplatin 
6 58 Base of Tongue      T4 N2B     Cisplatin & 

    Cetuximab 
7 50 Base of Tongue      T2 N2B     Cetuximab 
8 49 Tonsil      T1 N2B     Cisplatin 
9 42 Base of Tongue      T2 N2A     Cisplatin 

10 54 Base of Tongue      T4 N0     Cisplatin 
11 62 Tonsil      T4 N0     Cetuximab 
12 56 Base of Tongue      T2 N2B     Cisplatin 
13 50 Base of Tongue      T2 N2A     Cisplatin 
14 51 Tonsil      T3 N2B     Cisplatin 
15 50 Base of Tongue      T4 N2B     Cisplatin 
16 38 Tonsil      T1 N2B     Cisplatin 
17 68 Tonsil      T2 N2B     Cisplatin 
18 69 Tonsil      T3 N1     Cisplatin 
19 44 Base of Tongue      T2 N2B     Cetuximab 

*No patient had metastatic disease. 

 

 

Figure 1: CT-on-rails system  
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On the planning CT images of these 19 patients, 35 gross tumor volumes (GTVs) had 

been identified and delineated by consensus of several radiation oncologists. These 35 GTVs 

consisted of 17 primary GTVs and 18 nodal GTVs. Tracking changes of the GTVs that 

occurred over the course of treatment required contours on each set of daily CT images in 

addition to those on the planning CT images. Deformable image registration (DIR) was used 

to facilitate the generation of these additional contours. For each patient, after an initial rigid 

registration, an in-house DIR algorithm was used to register each set of daily CT images to 

the patient’s planning CT images. The vector field resulting from each registration described 

the mathematical transformation between the two image sets and was used to propagate the 

contours from the planning CT images onto the daily CT images. Each deformed contour 

was reviewed individually and residual inaccuracies were considered acceptable for the 

analysis. For the sake of consistency, the first 32 treatment fractions were considered even 

though some patients received as many as 35 treatment fractions. A 20
th

 patient had been 

considered initially but was omitted due to an insufficient number of available daily CTs. 

The DIR algorithm was based on Thirion’s demons algorithm
61

 and improved by Wang 

et al.
62

 The demons algorithm operates as if agents or demons located at each voxel were 

applying forces to deform a moving image ( ) with velocity ( ) based on the gradient of the 

difference between it and a static image ( ). This is expressed mathematically in Equation 1.  

 ⃗  
(   ) ⃗⃗⃗ 

( ⃗⃗⃗ )
 
 (   ) 

 (1) 

Wang et al. incorporated a second term (Equation 2) which swaps the roles of the original 

moving and static images to improve accuracy and efficiency to describe the force ( ) 

applied to deform the image. 
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 ⃗  
(   ) ⃗⃗⃗ 

( ⃗⃗⃗ )
 
 (   ) 

 
(   ) ⃗⃗⃗ 

( ⃗⃗⃗ )
 
 (   ) 

 (2) 

Wang et al. also assessed the accuracy of the algorithm by applying it to head and neck 

anatomy deformed by a known transformation. The average error between the results of the 

algorithm and the known transformation was 0.2 mm (standard deviation: 0.6 mm) while 

99% of the errors were within 2 mm.
63

 Performance of this algorithm has also been compared 

with a number of other DIR algorithms and performed favorably.
64

 

 

3.2. Descriptor variables 

In this work, four variables were used to describe the GTVs. Two of the variables, GTV 

volume and GTV centroid position, were reductive descriptors, while the other two were 

generative descriptors that represented GTV morphology. Each descriptor variable was 

converted to a feature vector that was used for the generation of predictive models. The 

descriptor variables and their conversion into feature vectors are expounded below. 

 

3.2.1. GTV volume descriptor 

The contours of each GTV in each CT image set were converted to a triangular surface 

mesh. The encompassed volume was then discretized into 1 mm isotropic voxels. The 

volume of the GTV was calculated as the product of the total number of voxels and the voxel 

volume (1 mm
3
). Although volumetric information is directly available from the treatment 

planning system (Pinnacle3, Philips Medical Systems, Andover, MA), it was determined in 

the manner described here as part of the more comprehensive image processing workflow. 

For each GTV in each CT image set, a single-element feature vector was generated from the 

numeric volume of the GTV. 
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3.2.2. Bony anatomy landmarks 

The three remaining descriptor variables, the GTV centroid position descriptor and the 

two GTV morphology descriptors, were based on the locations of one or more points in the 

patients’ anatomy. The locations of these points were considered relative to patient-specific, 

bony-anatomy coordinate systems in order to establish a frame of reference consistent across 

patients and CT image sets.  

The bony-anatomy coordinate systems were created by identifying the location of four 

bony landmarks on each set of CT images. The landmarks were 1) the basion, at the midpoint 

on the anterior margin of the foramen magnum 2) the incisive foramen, midline in the 

anterior hard palate, 3) the left cochlea, and 4) the right cochlea. Figure 2 depicts the 

anatomic location of these four landmarks. The landmarks were identified on a radiation 

therapy treatment planning system using a “bone” window and level setting. A single viewer 

positioned the landmarks, preventing inter-observer variability. 
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Figure 2: Locations of bony anatomy landmarks. (A) Sagittal plane depicting the basion (Ba) 

and the incisive foramen (IF) landmarks. Insert: Close-up of incisive foramen landmark in 

axial plane. (B) Coronal plane depicting the right cochlea (RC) and the left cochlea (LC) 

landmarks.  
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The lateral (LR) dimension of the bony-anatomy coordinate system was defined parallel 

to the line between the left and right cochlea landmarks. The anterior-posterior (AP) 

dimension was initially defined parallel to the line between the basion and incisive foramen 

landmarks. The cross product between the LR and AP dimensions defined the superior-

inferior (SI) dimension. The SI dimension was crossed with the LR dimension to re-define 

the AP dimension and ensure orthogonality. The bony-anatomy coordinate system was 

shifted to position its origin at the midpoint between the left and right cochlea landmarks. 

With no ground truth regarding the correct position of the bony landmarks, it is 

impossible to measure the error in their placement. The precision, or reproducibility, of their 

placement, however, was calculated from inter-landmark distances. The propagation of 

uncertainties in individual landmark placements to uncertainties in inter-landmark distances 

are presented in Equations 3 – 6 and in an equivalent matrix format in Equation 7. The 

uncertainty in the position of a point i or the distance between points i and j are denoted by    

and    ̅  respectively.   and   denote the basion and incisive foramen landmarks, 

respectively, and   and   denote the cochlea landmarks interchangeably. The uncertainties 

in placing each bony anatomy landmark was calculated by solving Equation 7 using ordinary 

least squares optimization. 

   ̅̅ ̅̅
    

    
    

    
     ̅̅ ̅̅

  (3) 

   ̅̅ ̅̅
    

    
    

    
     ̅̅ ̅̅
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[
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]  [

   ̅̅ ̅̅
 

   ̅̅ ̅̅
 

   ̅̅ ̅̅
 

] (7) 
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Assumed to be isotropic, the uncertainties were subsequently used to calculate the 

uncertainty in the position (       ) and orientation (      ,      , and     ) of the bony-

anatomy coordinate system (Equations 8 – 10).     denotes the average distance between 

points i and j. 

        
  

√ 
  (8) 

       
√  

    
 

   
 (9) 

           
√  

    
 

   
 (10) 

 

 

3.2.3. GTV centroid position descriptor 

The position of the geometric centroid of the GTV depicted on each CT image set was 

determined by the treatment planning system. A feature vector was created as a row vector 

containing the lateral, anterior-posterior, and superior-inferior coordinates of the GTV 

centroid relative to the bony-anatomy coordinate system. 

 

3.2.4. Radial extent GTV morphology descriptor 

Two generative descriptors were used to represent GTV morphology. Both descriptors 

were based on landmarks placed on the surface of each GTV. A computer algorithm 

positioned these surface landmarks where lines radiating from the GTV centroid intersected 

the GTV surface mesh. The lines radiating from the GTV centroid were equally spaced at 10 

degree polar and azimuthal angles with respect to the bony-anatomy coordinate system. The 

result was 614 surface landmarks on each GTV. 
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The first of the two generative descriptors was the radial extent GTV morphology 

descriptor and was based directly on the set of 614 GTV surface landmarks. The distances 

between the GTV centroid and the GTV surface landmarks were listed as a row vector. This 

vector was concatenated with the three coordinates of the GTV centroid to yield a 617-

element feature vector. This closely resembled the morphometric analysis technique of Lele 

and Richtsmeier in which a configuration of landmarks is described by the complete set of 

inter-landmark distances.
65

 In the work presented here, only a select subset of inter-landmark 

distances was considered. 

 

3.2.5. Spherical harmonic GTV morphology descriptor 

The second generative descriptor was the spherical harmonic GTV morphology 

descriptor. It was based on a spherical harmonic decomposition of the distances between the 

GTV centroid and the GTV surface landmarks. Spherical harmonics are the angular part of 

solutions to Laplaces’ equation represented in spherical coordinates (Equation 11). The real 

from of spherical harmonics (  
 (   )) is provided in Equation 12 and depicted in Figure 3. 

The degree of the spherical harmonic (l) is a whole number, the order of the spherical 

harmonic (m) is an integer between -l and l, inclusive, and   
 ( ) represents the associated 

Legendre Polynomials. Polar and azimuthal coordinates are denoted   and  , respectively. 
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Figure 3: Spherical harmonics.   
  is depicted for degree 0 ≤   ≤ 2 and order -2 ≤   ≤ 2.  

 

Frequently, a set of spherical harmonic terms are used as an orthogonal basis to quantify 

the notion of shape. Applications of this type have been used to describe diverse phenomena 

such as atomic orbitals,
66, 67

 molecular binding sites,
68

 computer graphics lighting,
69, 70

 

planetary gravitational and magnetic fields,
71-74

 and the cosmic microwave background.
75

 A 

representation of spherical harmonics used as a basis is depicted in Equation 13. Here   
  

denotes the set of unknown coefficients weighing each spherical harmonic term. Projecting a 

particular shape onto the spherical harmonic basis is equivalent to solving for   
 .  

 (   )  ∑ ∑   
   

 (   ) 
    

 
    (13) 

The configuration of the 614 surface landmarks of each GTV was projected onto the 

spherical harmonic basis. This was accomplished by recasting Equation 13 as a matrix 

multiplication and setting it equal to the distances between the GTV centroids and the GTV 
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surface landmarks ( (   )). Ordinary least squares optimization was then used to solve for 

  
  (Equation 14). 

[  
 (   )][  

 ]  [ (   )] (14) 

The spherical harmonics of every order up through degree 9, a total of 100 terms, were 

included in the basis. The resulting 100 spherical harmonic coefficients were listed in a row 

vector. This vector was concatenated with the three coordinates of the GTV centroid to yield 

a 103-element feature vector. 

 

3.2.6. Regularizing feature vector elements 

For each GTV, the feature vectors derived from the four descriptor variables changed 

over the course of treatment. The set of feature vectors pertaining to a particular GTV 

throughout treatment represented the changing state of the GTV. Each element of these 

vectors was viewed as sample from a time series. To reinforce consideration of the feature 

vector elements as continuous functions, each time series was smoothed using a cubic 

smoothing spline. The parameter of the smoothing spline was chosen qualitatively to fit the 

data while enforcing a smooth function. The smooth function was sampled to yield new 

feature vectors for model generation. 
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3.3. Forecast models 

Six models were used to forecast the changes in the descriptor variable feature vectors at 

each treatment fraction over the course of therapy. They are referred to as the static, linear, 

mean, median, vector PCA, and 2D PCA models, and each was characterized by a different 

set of model parameters as described below. The model parameters were determined from 

training GTVs and applied to test GTVs as described in Section 3.6. 

 

3.3.1. Static model 

The first of the models, the static model, assumed no change in the feature vector 

elements from their initial values depicted in the planning CT images. A forecast according 

to this model consisted of the un-normalized initial value of the test GTV feature vector 

perpetuated throughout the duration of treatment. This is represented in Equation 15 where 

        and         denote the feature vectors corresponding to the planning CT and the daily-

acquired CT from treatment fraction t, respectively. Conceptually, this model is similar to the 

conventional, non-adaptive radiation therapy management strategy where a single treatment 

plan is optimized based on the planning CT images and administered without adjustment for 

the entirety of treatment. 

                (15) 

 

3.3.2. Linear model 

A forecast according to a linear model was the linear interpolation between the test GTV 

feature vector’s initial value and the median relative value of the training GTV feature 

vectors at the final treatment fraction (treatment fraction 32). These interpolated values were 
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applied to the initial, un-normalized value of the test GTV to forecast feature vectors for the 

entire treatment. Equations 16 and 17 describe generation of the linear model. Here, β is the 

constant rate of change determined by the feature vectors of the training GTVs (        ). 

                (     ) (16) 

        (
                  

        
)  (

 

  
) (17) 

 

3.3.3. Mean model 

A forecast according to the mean model was determined by calculating the mean relative 

value of the training GTV feature vectors at each treatment fraction (Equation 18). These 

values were applied to the initial, un-normalized value of the test GTV to forecast feature 

vectors for the entire treatment.  

                    (
        

        
) (18) 

 

3.3.4. Median model 

Similar to that of the mean model, a forecast according to the median model was created 

by calculating the median relative value of the training GTV feature vectors at each treatment 

fraction. These values were applied to the initial, un-normalized value of the test GTV to 

forecast feature vectors for the entire treatment (Equation 19).  

                      (
        

        
) (19) 

Because this model was based on the median rather than the mean, it was less 

susceptible to the influence of extreme values of the feature vector elements. These outlying 
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values may represent measurement or calculation errors, or instances of feature vector 

elements considerably dissimilar to the others. 

 

3.3.5. Vector PCA and 2D PCA models 

Two models were based on principal component analysis (PCA) of the feature vectors 

and are referred to as the vector PCA model and the 2-dimensional (2D) PCA model. PCA is 

a quantitative analysis technique that identifies the primary modes of variation among the 

elements of some data vector, in this case, the GTV feature vectors. To identify the primary 

modes of variation, first, a covariance matrix of the feature vector elements was generated. 

This was achieved differently for the two PCA models.  

The vector PCA model generated the covariance matrix in the manner of conventional 

PCA. For each GTV, there were 33 instances of the feature vector for each of the four 

descriptor variables. The instances were of length n (where n = 1, 3, 617, or 103, depending 

on the variable) and were derived from the planning CT images and the daily CT images 

acquired at each of the 32 treatment fractions. A 33 x n matrix was created from the stack of 

feature vectors. This matrix was considered a single observation of the manner in which the 

GTV feature vectors changed during treatment. Because generation of the covariance matrix 

operates on a stack of observations as row vectors, each 33 x n matrix needed to be 

vectorized into a 1 x 33n vector as depicted in Equation 20. The covariance matrix was then 

calculated from the stack of these row observation vectors. 

   ([

    
    

    
    

     
     

    
                

])  [                                                     ] (20) 
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For the 2D PCA model, the covariance matrix was generated without vectorizing the 

matrices. Instead, the covariance matrix ( ) was calculated from the 2-dimensional 

observations according to Equation 21 where    is the j
th

 observation matrix. 

  
 

 
∑ (    ̅)

 
(    ̅)

 
    (21) 

Two advantages of avoiding the vectorization step were that 1) the covariance matrix was 

considerably smaller, easing subsequent computation, and 2) structure of data inherently 

organized as a matrix with correspondence among elements in each column was maintained. 

Described by Yang et al., this technique is appropriate for inherently 2-dimensional data 

structures such as images of faces.
76

 

After the covariance matrix was generated, it was decomposed into its eigenvectors and 

associated eigenvalues. The resulting eigenvectors were the principal components (PCs) of 

variation among the elements of the observations, and the associated eigenvalues represented 

the variance of the observations along the PCs. The PCs were ranked in importance by 

ordering them by the magnitude of their variances. The eigenvector with the largest 

eigenvalue was denoted as the 1
st
 PC, the eigenvector with the second largest eigenvalue was 

the 2
nd

 PC, and so on. PCA is commonly used to reduce the complexity and dimensionality 

of data without sacrificing an excessive amount of information. This is achieved by retaining 

only the most influential PCs and ignoring the rest. Beginning with the 1
st
 PC, additional PCs 

were incorporated in order of decreasing variance until the sum of included variances 

exceeded a predetermined threshold proportion of the total variance (90%). 

For both the vector PCA and 2D PCA models, the original observations were projected 

onto the selected subset of PCs after the eigen-decomposition. The median values of the 

observations along each of the selected PCs were back-transformed to represent an average 
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observation. The feature vector values corresponding to this average observation were 

applied to the initial, un-normalized value of the test GTV to forecast feature vectors for the 

entire treatment. The median PC values were used because they were robust to outliers and 

because the forecast corresponding to the mean PC values was equivalent to that of the mean 

model above. The median PC values, however, did not necessarily generate a forecast 

equivalent to the median model above. 

 

3.4. Representing changes in feature vector elements 

The GTV centroid position feature vectors and both morphology feature vectors all 

included three elements that designated the position of the GTV centroid. Due to the large 

variation in the initial centroid position, the absolute change of these elements, rather than 

their relative change, was considered. Changes of the remaining elements were described 

relative to their initial value. An additional constraint capped the maximum daily change at 

25% for all elements of the spherical harmonic feature vector in order to regularize the 

forecast. This value was determined based on preliminary modeling experience.  

 

3.5. Model adjustment schemes 

To explore the effects of incorporating patient-specific information acquired during 

treatment, each of the models above was evaluated with and without a number of adjustment 

points. Adjustment points were opportunities for the model parameters, and thus the forecast 

feature vectors, to be updated to match more recently observed patient-specific values. This 

mimicked an adaptive radiation therapy treatment where the patient was re-imaged and a new 

plan was optimized at each adjustment point. Model adjustment schemes incorporating 0, 1, 
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2, 3, or 5 adjustment points were compared. This included multiple schemes with 2 or 3 

adjustments positioned at various treatment fractions. A total of 11 different adjustment 

schemes were considered and are illustrated in Figure 4. 
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Figure 4: Diagram of model adjustment schemes. Time point 0 represents the time of the pre-

treatment CT. Subsequent time points mark treatment fractions. Model parameters were 

determined from the pre-treatment CT images and images taken at the adjustment points 

(closed circles) and applied to subsequent treatment fractions (open circles) until the next 

adjustment point or the end of treatment. For readability, adjustment schemes are grouped 

vertically by number of adjustment points.  
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At each adjustment point, the forecast according to each model was adjusted to match 

the actual values of the test GTV feature vector at that point. Equations 22 – 26 are similar to 

Equations 15 – 19 but represent the feature vectors predicted between adjustment points at 

treatment fractions p and q. These equations also apply to the interval prior to the first 

adjustment point and subsequent to the last one when p = 0 and q = 32, respectively. 

                    (22) 

                    (      ) (23) 

         (
                 

        
)  (

 

   
) (24) 

                        (
        

        
) (25) 

                          (
        

        
) (26) 

To elaborate, in order to predict the feature vectors for treatment fractions between to 

adjustment points according to the static model (Equation 22), the test GTV feature vector at 

the most recent adjustment point (p) was sustained until the next adjustment point (q). For the 

linear model, the adjusted forecast was the linear interpolation between the value of the test 

GTV feature vector at p and the median value of the training GTV feature vectors at q 

(Equations 23 and 24). The mean and median models were shifted at p so the average change 

in the feature vector was applied to the observed test GTV value at p rather than to the 

average of the training GTV feature vectors (Equations 25 and 26). For both the vector PCA 

and 2D PCA models, the PCs were determined on each inter-adjustment point period. The 

matrices were thus f x n where f was the number of treatment fractions between adjustment 

points. Figure 5 is an example of how the static and linear models were adjusted at an 

adjustment point mid-treatment. 
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Figure 5: Illustration of static and linear models with and without adjustment points. Green 

points denote observations and black lines denote forecast values. Error bars represent 

observed values from the training dataset. 

 

 

3.6. Evaluation of model forecast accuracy with leave-one-out cross-validation 

Evaluation of the forecast accuracy of each model and each model adjustment scheme 

was conducted using leave-one-out cross-validation. In leave-one-out cross-validation, 1 of 

the 35 GTVs was identified as the test GTV, and the remaining 34 were considered the 

training GTVs. The model parameters were established and adjusted as described above 

based on the normalized feature vectors of the 34 training GTVs. The models were then 

applied to the un-normalized, initial values of the test GTV to forecast feature vectors at 
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subsequent treatment fractions. The un-normalized values of the test GTV feature vectors at 

adjustment points were considered to adjust the model parameters as described above. The 

accuracy of each model was assessed by calculating the forecast error as defined for each 

descriptor variable below. This process was repeated 34 times so that each GTV was 

considered the test GTV once, with an associated forecast error for each of the models. 

For the GTV volume descriptor, forecast error was defined as the root mean squared 

error (RMSE) between the true and forecast test GTV volume at each fraction. For the GTV 

centroid position descriptor, forecast error was the RMSE between the true and forecast 

position of the test GTV centroid relative to the bony-anatomy coordinate system at each 

fraction. Lastly, for the two morphology descriptors, forecast error was the RMSE between 

the position of the 614 surface landmarks according to the true and forecast test GTV feature 

vectors at each fraction. 

 

3.7. Statistical comparison of model forecast accuracy 

For each of the six model types, the adjustment scheme that resulted in the smallest 

median forecast error for a particular number of adjustment points was determined. This was 

trivial for schemes with 0, 3, or 5 adjustment points where there was only one scheme per 

model type. However, there were five schemes per model type that had 1 adjustment point 

and three schemes per model type that had 2 adjustment points. The resulting models were 

considered the most accurate models for a certain level of effort and intervention as 

represented by the number of adjustment points. Statistical comparisons were made between 

these models to address Specific Aims 1 – 4. All comparisons were made using two-tailed, 

Wilcoxon signed-rank tests considered to be significant at p < 0.05. 
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The effect on forecast accuracy of adding adjustment points to models of the reductive 

descriptor variables (GTV volume and GTV centroid position) was evaluated for Specific 

Aim 1. This was accomplished by comparing each model of a certain type and number of 

adjustment points to the model of the same type and no adjustment points. In addition, the 

marginal effect of adding adjustment points was determined by comparing each model of a 

certain type and number of adjustment points to the model of the same type and one fewer 

adjustment points. Both types of comparisons were performed using models of the radial 

extent and spherical harmonic GTV morphology descriptor variables for Specific Aim 2. 

For Specific Aim 3, the effect of model selection on forecast accuracy for the reductive 

descriptor variables was evaluated. This model type effect was determined by comparing the 

forecast accuracy of each non-static model to that of the static model with an equal number 

of adjustment points. The same comparison was made using models of the two generative 

morphology descriptors for Specific Aim 4. 
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Chapter 4 

RESULTS 

4.1. Generating feature vectors 

With the exception of the GTV volume descriptor, determination of descriptor variable 

values depended on a coordinate system based on bony anatomy landmarks. The uncertainty 

in identifying each bony anatomy landmark was calculated using equations that described 

how these uncertainties propagated to yield measurable variations in inter-landmark distances 

(Equations 8 – 10). The resulting uncertainty in identifying the basion, incisive foramen, left 

cochlea, and right cochlea was 1.1 mm, 1.1 mm, 0.3 mm, and 0.3 mm, respectively. These 

uncertainties, in turn, lead to a 0.2 mm precision in determining the origin of the bony 

anatomy coordinate system. The precision of the orientation of the coordinate system was 1.1 

degrees (pitch), 0.3 degrees (roll), and 0.3 degrees (yaw). 

In order to generate feature vectors for the spherical harmonic GTV morphology 

descriptor, the number of terms to be included in the spherical harmonic basis needed to be 

determined. Figure 6 presents the error between the observed position of GTV surface 

landmarks and their position when modeled using a spherical harmonic basis of increasing 

degree. This error from truncating the series of spherical harmonic terms decreased with an 

increase in the degree (and the number of terms). However, the improvement diminished 

with the addition of subsequent terms. A spherical harmonic basis of degree 9, corresponding 

to 100 terms, reduced the median error to 0.4 mm and the maximum error to 0.7 mm. 
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Figure 6: Morphology approximation error according to the maximum degree of the spherical 

harmonic basis. Box range is 25
th

 to 75
th

 percentile; whisker range is minimum to maximum. 

 

 

The observed data for each descriptor variable underwent smoothing to discern a 

functional description of its change over time. The function resulting from applying cubic 

smoothing splines to the observed data represented a trade-off between generating a smooth 

function and fitting the data precisely. The residual errors in fitting the data are presented in 

Figures 7 – 9. These figures depict the root mean squared error (RMSE) between the 

smoothing spline function and the data of the descriptor variable for each GTV. 

For the GTV volume descriptor (Figure 7), the median RMSE was 3.0 mm. For the GTV 

centroid position descriptor, the median RMSE in the lateral, anterior-posterior, and superior-

inferior coordinates were 0.7 mm, 1.3 mm, and 0.7 mm, respectively (Figure 8). The spatial 

distribution of the smoothing spline error for the radial extent GTV morphology descriptor is 

illustrated in Figure 9. The size and position of the points in this figure reflect the GTV 
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surface landmarks depicted with perspective on the surface of a sphere. Their color 

represents the sub-millimeter residual error from the smoothing process. A depiction of this 

error for the spherical harmonic morphology descriptor is not presented as the coefficient 

values represent geometrical constructs rather than intuitive values with units consistent to 

the original measured data. 
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Figure 7: Smoothing spline error – GTV volume descriptor. Box range is 25
th

 to 75
th

 

percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 8: Smoothing spline error – GTV centroid position descriptor. Box range is 25
th

 to 

75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 9: Smoothing spline error – Radial extent GTV morphology descriptor. Points 

represent surface landmarks on the surface of a sphere viewed from six perspectives: (A) 

medial (MED), (B) lateral (LAT), (C) posterior (POS), (D) anterior (ANT), (E) inferior 

(INF), and (F) superior (SUP). 
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4.2. Results for Specific Aims 

The forecast errors of the non-static models of each descriptor variable with different 

numbers of adjustment points are depicted alongside those of the static models in Figures 10 

– 29. Analyzing different combinations of the models elucidated the influence of the number 

of adjustment points and the type of model on forecast accuracy. 
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Figure 10: Forecast error of static and linear models – GTV volume descriptor. Box range is 

25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 11: Forecast error of static and mean models – GTV volume descriptor. Box range is 

25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 12: Forecast error of static and median models – GTV volume descriptor. Box range 

is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 13: Forecast error of static and vector PCA models – GTV volume descriptor. Box 

range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 14: Forecast error of static and 2D PCA models – GTV volume descriptor. Box range 

is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 15: Forecast error of static and linear models – GTV centroid position descriptor. Box 

range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 16: Forecast error of static and mean models – GTV centroid position descriptor. Box 

range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 17: Forecast error of static and median models – GTV centroid position descriptor. 

Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 18: Forecast error of static and vector PCA models – GTV centroid position 

descriptor. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 19: Forecast error of static and 2D PCA models – GTV centroid position descriptor. 

Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 20: Forecast error of static and linear models – Radial extent GTV morphology 

descriptor. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 21: Forecast error of static and mean models – Radial extent GTV morphology 

descriptor. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 22: Forecast error of static and median models – Radial extent GTV morphology 

descriptor. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 23: Forecast error of static and vector PCA models – Radial extent GTV morphology 

descriptor. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 24: Forecast error of static and 2D PCA models – Radial extent GTV morphology 

descriptor. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 25: Forecast error of static and linear models – Spherical harmonic GTV morphology 

descriptor. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 26: Forecast error of static and mean models – Spherical harmonic GTV morphology 

descriptor. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 



44 
 

N u m b e r o f A d ju s tm e n t P o in ts

R
M

S
E

 (
m

m
)

           0            1            2            3            5

0

2

4

6

8

1 0

1 2

S ta tic  M o d e l

M e d ia n  M o d e l

 

Figure 27: Forecast error of static and median models – Spherical harmonic GTV 

morphology descriptor. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 

percentile. 
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Figure 28: Forecast error of static and vector PCA models – Spherical harmonic GTV 

morphology descriptor. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 

percentile. 
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Figure 29: Forecast error of static and 2D PCA models – Spherical harmonic GTV 

morphology descriptor. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 

percentile. 
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4.2.1. Specific Aim 1 results 

For Specific Aim 1, models of GTV volume and GTV centroid position were compared 

with other models of the same type but different numbers of adjustment points. 

 

4.2.1.1. Specific Aim 1 results – GTV volume descriptor 

Figures 30 – 35 depict the change in forecast error when adjustment points are included 

for all models of GTV volume. Inclusion of any number of adjustment points resulted in a 

statistically significant decrease in forecast error. Even a single adjustment point was 

sufficient to decrease the error by 1.7% – 6.5% depending on the model type. This range 

represented a 12.9% – 30.0% improvement relative to the median forecast error from models 

of the same type but with no adjustment points.  
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Figure 30: Change in forecast error of the static model with adjustment points – GTV volume 

descriptor. Statistical p-values are included below each box. Box range is 25
th

 to 75
th

 

percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 31: Change in forecast error of the linear model with adjustment points – GTV 

volume descriptor. Statistical p-values are included below each box. Box range is 25
th

 to 75
th

 

percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 32: Change in forecast error of the mean model with adjustment points – GTV volume 

descriptor. Statistical p-values are included below each box. Box range is 25
th

 to 75
th

 

percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 33: Change in forecast error of the median model with adjustment points – GTV 

volume descriptor. Statistical p-values are included below each box. Box range is 25
th

 to 75
th

 

percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 34: Change in forecast error of the vector PCA model with adjustment points – GTV 

volume descriptor. Statistical p-values are included below each box. Box range is 25
th

 to 75
th

 

percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 35: Change in forecast error of the 2D PCA model with adjustment points – GTV 

volume descriptor. Statistical p-values are included below each box. Box range is 25
th

 to 75
th

 

percentile; whisker range is 10
th

 to 90
th

 percentile. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



50 
 

Figures 36 – 41 present the sequential improvement in forecast accuracy with each 

subsequent addition of an adjustment point. For all model types, the additions of the first and 

second adjustment points were both statistically significant. However, the addition of the 

third was not, except for the static model. Adding two more (for a total of 5 adjustment 

points) again led to a statistically significant decrease in forecast error.  
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Figure 36: Marginal change in forecast error of the static model with subsequent adjustment 

points – GTV volume descriptor. Statistical p-values are included below each box. Box range 

is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 37: Marginal change in forecast error of the linear model with subsequent adjustment 

points – GTV volume descriptor. Statistical p-values are included below each box. Box range 

is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 38: Marginal change in forecast error of the mean model with subsequent adjustment 

points – GTV volume descriptor. Statistical p-values are included below each box. Box range 

is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 39: Marginal change in forecast error of the median model with subsequent 

adjustment points – GTV volume descriptor. Statistical p-values are included below each 

box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 40: Marginal change in forecast error of the vector PCA model with subsequent 

adjustment points – GTV volume descriptor. Statistical p-values are included below each 

box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 41: Marginal change in forecast error of the 2D PCA model with subsequent 

adjustment points – GTV volume descriptor. Statistical p-values are included below each 

box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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4.2.1.2. Specific Aim 1 results – GTV centroid position descriptor 

The forecast error of models of the GTV centroid position depended on the number of 

adjustment points in a way similar to that of the GTV volume. For all model types, the 

inclusion of any number of adjustment points significantly decreased the error relative to 

models with no adjustment points (Figures 42 – 47). The median decrease in error due to the 

addition of a single adjustment point was 0.9 mm – 1.1 mm, depending on the model type. 

This represented 27.0% – 34.1% of the median forecast error of models of the same type but 

with no adjustment points. 
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Figure 42: Change in forecast error of the static model with adjustment points – GTV 

centroid position descriptor. Statistical p-values are included below each box. Box range is 

25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 43: Change in forecast error of the linear model with adjustment points – GTV 

centroid position descriptor. Statistical p-values are included below each box. Box range is 

25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 44: Change in forecast error of the mean model with adjustment points – GTV 

centroid position descriptor. Statistical p-values are included below each box. Box range is 

25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 45: Change in forecast error of the median model with adjustment points – GTV 

centroid position descriptor. Statistical p-values are included below each box. Box range is 

25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 46: Change in forecast error of the vector PCA model with adjustment points – GTV 

centroid position descriptor. Statistical p-values are included below each box. Box range is 

25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 



57 
 

N u m b e r o f A d ju s tm e n t P o in ts


R

M
S

E
 (

m
m

)

0 1 2 3 5

-6

-4

-2

0

2

0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0

 

Figure 47: Change in forecast error of the 2D PCA model with adjustment points – GTV 

centroid position descriptor. Statistical p-values are included below each box. Box range is 

25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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In addition, each successive addition of an adjustment point led to a further decrease in 

error that was statistically significant. (Figures 48 – 53).The magnitude and range of the 

change in forecast error, however, decreased as the number of adjustment points increased. 
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Figure 48: Marginal change in forecast error of the static model with subsequent adjustment 

points – GTV centroid position descriptor. Statistical p-values are included below each box. 

Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 49: Marginal change in forecast error of the linear model with subsequent adjustment 

points – GTV centroid position descriptor. Statistical p-values are included below each box. 

Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 50: Marginal change in forecast error of the mean model with subsequent adjustment 

points – GTV centroid position descriptor. Statistical p-values are included below each box. 

Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 51: Marginal change in forecast error of the median model with subsequent 

adjustment points – GTV centroid position descriptor. Statistical p-values are included below 

each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 52: Marginal change in forecast error of the vector PCA model with subsequent 

adjustment points – GTV centroid position descriptor. Statistical p-values are included below 

each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 53: Marginal change in forecast error of the 2D PCA model with subsequent 

adjustment points – GTV centroid position descriptor. Statistical p-values are included below 

each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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4.2.2. Specific Aim 2 results 

As in Specific Aim 1, Specific Aim 2 compares the forecast error of models of the same 

type but with differing numbers of adjustment points. However, in Specific Aim 2, the 

models are based on the radial extent and spherical harmonic GTV morphology descriptors. 

 

4.2.2.1. Specific Aim 2 results – Radial extent GTV morphology descriptor 

Figures 54 – 59 depict the change in forecast error of models based on the radial extent 

GTV morphology descriptor when adjustment points are included. The inclusion of any 

number of adjustment points led to a statistically significant decrease in forecast error with a 

median change of 1.0 mm – 1.2 mm. This represented a 27.5% – 33.8% improvement in 

forecast accuracy of these models compared to models of the same type but with no 

adjustment points. 
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Figure 54: Change in forecast error of the static model with adjustment points – Radial extent 

GTV morphology descriptor. Statistical p-values are included below each box. Box range is 

25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 55: Change in forecast error of the linear model with adjustment points – Radial 

extent GTV morphology descriptor. Statistical p-values are included below each box. Box 

range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 56: Change in forecast error of the mean model with adjustment points – Radial extent 

GTV morphology descriptor. Statistical p-values are included below each box. Box range is 

25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 57: Change in forecast error of the median model with adjustment points – Radial 

extent GTV morphology descriptor. Statistical p-values are included below each box. Box 

range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 58: Change in forecast error of the vector PCA model with adjustment points – Radial 

extent GTV morphology descriptor. Statistical p-values are included below each box. Box 

range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 59: Change in forecast error of the 2D PCA model with adjustment points – Radial 

extent GTV morphology descriptor. Statistical p-values are included below each box. Box 

range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Each successive addition of an adjustment point also led to a statistically significant 

decrease in error (Figures 60 – 65), although these changes decreased in magnitude and range 

as the number of adjustment points increased. 
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Figure 60: Marginal change in forecast error of the static model with subsequent adjustment 

points – Radial extent GTV morphology descriptor. Statistical p-values are included below 

each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 61: Marginal change in forecast error of the linear model with subsequent adjustment 

points – Radial extent GTV morphology descriptor. Statistical p-values are included below 

each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 62: Marginal change in forecast error of the mean model with subsequent adjustment 

points – Radial extent GTV morphology descriptor. Statistical p-values are included below 

each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 63: Marginal change in forecast error of the median model with subsequent 

adjustment points – Radial extent GTV morphology descriptor. Statistical p-values are 

included below each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 

percentile. 
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Figure 64: Marginal change in forecast error of the vector PCA model with subsequent 

adjustment points – Radial extent GTV morphology descriptor. Statistical p-values are 

included below each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 

percentile. 
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Figure 65: Marginal change in forecast error of the 2D PCA model with subsequent 

adjustment points – Radial extent GTV morphology descriptor. Statistical p-values are 

included below each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 

percentile. 
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4.2.2.2. Specific Aim 2 results – Spherical harmonic GTV morphology descriptor 

Models of the spherical harmonic GTV morphology descriptor depended on the number 

of adjustment points in a manner similar to that of the radial extent descriptor. Statistically 

significant decreases in the forecast error of models with any number of adjustment points 

compared to those with no adjustment points are depicted in Figures 66 – 71. The median 

change in error of adding the first adjustment point was 1.1 mm – 1.2 mm, depending on the 

model type. These changes represented 28.6% – 33.0% of the median error of models of the 

same type but with no adjustment points. 
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Figure 66: Change in forecast error of the static model with adjustment points – Spherical 

harmonic GTV morphology descriptor. Statistical p-values are included below each box. Box 

range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 67: Change in forecast error of the linear model with adjustment points – Spherical 

harmonic GTV morphology descriptor. Statistical p-values are included below each box. Box 

range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 68: Change in forecast error of the mean model with adjustment points – Spherical 

harmonic GTV morphology descriptor. Statistical p-values are included below each box. Box 

range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 69: Change in forecast error of the median model with adjustment points – Spherical 

harmonic GTV morphology descriptor. Statistical p-values are included below each box. Box 

range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 70: Change in forecast error of the vector PCA model with adjustment points – 

Spherical harmonic GTV morphology descriptor. Statistical p-values are included below 

each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 71: Change in forecast error of the 2D PCA model with adjustment points – Spherical 

harmonic GTV morphology descriptor. Statistical p-values are included below each box. Box 

range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Each successive addition of an adjustment point resulted in a statistically significant 

decrease in the forecast error (Figures 72 – 77). As observed for the radial extent descriptor, 

the magnitude and range of these changes decreased with an increase in the number of 

adjustment points. 
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Figure 72: Marginal change in forecast error of the static model with subsequent adjustment 

points – Spherical harmonic GTV morphology descriptor. Statistical p-values are included 

below each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 73: Marginal change in forecast error of the linear model with subsequent adjustment 

points – Spherical harmonic GTV morphology descriptor. Statistical p-values are included 

below each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 74: Marginal change in forecast error of the mean model with subsequent adjustment 

points – Spherical harmonic GTV morphology descriptor. Statistical p-values are included 

below each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 75: Marginal change in forecast error of the median model with subsequent 

adjustment points – Spherical harmonic GTV morphology descriptor. Statistical p-values are 

included below each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 

percentile. 
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Figure 76: Marginal change in forecast error of the vector PCA model with subsequent 

adjustment points – Spherical harmonic GTV morphology descriptor. Statistical p-values are 

included below each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 

percentile. 



77 
 

In c re a s in g  N u m b e r o f A d ju s tm e n t P o in ts


R

M
S

E
 (

m
m

)

0  to  1 1  to  2 2  to  3 3  to  5

-5

-4

-3

-2

-1

0

1

2

3

0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0

 

Figure 77: Marginal change in forecast error of the 2D PCA model with subsequent 

adjustment points – Spherical harmonic GTV morphology descriptor. Statistical p-values are 

included below each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 

percentile. 
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4.2.3. Specific Aim 3 results 

Specific Aim 3 pertains to the effect of the model type on the forecast error for models 

of GTV volume and GTV centroid position. 

 

4.2.3.1. Specific Aim 3 results – GTV volume descriptor 

Figures 78 – 82 depict the change in forecast error due to selection of the non-static 

models of GTV volume for each number of adjustment points. With only two exceptions (the 

median and 2D PCA models with 5 adjustment points), the five non-static models always 

resulted in a statistically significant decrease in forecast error. The range and magnitude of 

these changes diminished with the increasing number of adjustment points. For models with 

no adjustment points, the non-static models decreased the error compared to the static model 

by 11.7% – 12.5%. These changes corresponding to a 54.2% – 58.0% decrease relative to the 

median error of the static model. 

For models of GTV volume, the relative decrease in forecast error achieved by selection 

of each non-static model was considerably larger than that achieved with the addition of 

adjustment points in Specific Aim 1. 
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Figure 78: Change in forecast error from the static model to the linear model with an equal 

number of adjustment points – GTV volume descriptor. Statistical p-values are included 

below each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 79: Change in forecast error from the static model to the mean model with an equal 

number of adjustment points – GTV volume descriptor. Statistical p-values are included 

below each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 80: Change in forecast error from the static model to the median model with an equal 

number of adjustment points – GTV volume descriptor. Statistical p-values are included 

below each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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Figure 81: Change in forecast error from the static model to the vector PCA model with an 

equal number of adjustment points – GTV volume descriptor. Statistical p-values are 

included below each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 

percentile. 
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Figure 82: Change in forecast error from the static model to the 2D PCA model with an equal 

number of adjustment points – GTV volume descriptor. Statistical p-values are included 

below each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 percentile. 
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4.2.3.2. Specific Aim 3 results – GTV centroid position descriptor 

The change in forecast error due to the selection of non-static models of GTV centroid 

position is depicted in Figures 83 – 87. Only a subset of GTV centroid position non-static 

models resulted in a statistically significant change in forecast error compared to the static 

model. These included a decrease in error for the mean and vector PCA models with 2 

adjustment points, and an increase in error for the linear model with 3 adjustment points, the 

median models with 3 and 5 adjustment points, and the 2D PCA models with 3 and 5 

adjustment points. These changes in forecast error were 0.0 mm – 0.2 mm representing 

changes of 0.9% – 5.1% relative to the median error of the corresponding static model. 

However, most changes were not statistically significant. 

Unlike the comparison between models of GTV volume, the relative decrease in forecast 

error achieved by selection of each non-static model was considerably smaller than that 

achieved with the addition of adjustment points in Specific Aim 1. 
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Figure 83: Change in forecast error from the static model to the linear model with an equal 

number of adjustment points – GTV centroid position descriptor. Statistical p-values are 

included below each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 

percentile. 
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Figure 84: Change in forecast error from the static model to the mean model with an equal 

number of adjustment points – GTV centroid position descriptor. Statistical p-values are 

included below each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 

percentile. 
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Figure 85: Change in forecast error from the static model to the median model with an equal 

number of adjustment points – GTV centroid position descriptor. Statistical p-values are 

included below each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 

percentile. 
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Figure 86: Change in forecast error from the static model to the vector PCA model with an 

equal number of adjustment points – GTV centroid position descriptor. Statistical p-values 

are included below each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 

percentile. 
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Figure 87: Change in forecast error from the static model to the 2D PCA model with an equal 

number of adjustment points – GTV centroid position descriptor. Statistical p-values are 

included below each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 to 90
th

 

percentile. 
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4.2.4. Specific Aim 4 results 

The comparisons of Specific Aim 4 are similar to those of Specific Aim 3, but determine 

the effect of model type on the forecast error for the radial extent and spherical harmonic 

GTV morphology descriptors. 

 

4.2.4.1. Specific Aim 4 results – Radial extent GTV morphology descriptor 

Figures 88 – 92 depict the change in forecast error due to selection of the non-static 

models of the radial extent GTV morphology descriptor. For models with no adjustment 

points, selection of each non-static model resulted in a statistically significant decrease in the 

error compared to the static model. These changes were all 0.2 mm and represented 

improvements of 3.8% – 5.9% relative to the median error of the corresponding static model.  

The relative decrease in forecast error achieved by selection of each non-static model of 

the radial extent descriptor with no adjustment points was considerably smaller than that 

achieved with the addition of adjustment points in Specific Aim 2. 

Other statistically significant changes were a decrease for the mean model with 1 

adjustment point, increases in the median models with 2 and 5 adjustment points, and an 

increase for the 2D PCA model with 5 adjustment points. These changes were small (0.0 mm 

– 0.2 mm) representing 1.0% – 5.4% of the median error of the corresponding static model. 
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Figure 88: Change in forecast error from the static model to the linear model with an equal 

number of adjustment points – Radial extent GTV morphology descriptor. Statistical p-

values are included below each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 

to 90
th

 percentile. 
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Figure 89: Change in forecast error from the static model to the mean model with an equal 

number of adjustment points – Radial extent GTV morphology descriptor. Statistical p-

values are included below each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 

to 90
th

 percentile. 
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Figure 90: Change in forecast error from the static model to the median model with an equal 

number of adjustment points – Radial extent GTV morphology descriptor. Statistical p-

values are included below each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 

to 90
th

 percentile. 
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Figure 91: Change in forecast error from the static model to the vector PCA model with an 

equal number of adjustment points – Radial extent GTV morphology descriptor. Statistical p-

values are included below each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 

to 90
th

 percentile. 
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Figure 92: Change in forecast error from the static model to the 2D PCA model with an equal 

number of adjustment points – Radial extent GTV morphology descriptor. Statistical p-

values are included below each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 

to 90
th

 percentile. 
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4.2.4.2. Specific Aim 4 results – Spherical harmonic GTV morphology descriptor 

The change in forecast error due to the selection of non-static models of the spherical 

harmonic GTV morphology descriptor is depicted in Figures 93 – 97. For this descriptor, 

only the linear and median models with no adjustment points, and the linear model with 1 

adjustment point resulted in a statistically significant decrease in error. These changes were 

0.2 mm, 0.2 mm and 0.1 mm, respectively, representing changes of 4.7%, 5.1% and 3.6% 

relative to the median error of the corresponding static model. 

Meanwhile, several non-static models featuring a larger number of adjustment points 

demonstrated a statistically significant increase in the forecast error. These included the mean 

models with 2, 3 and 5 adjustment points, the median models with 2 and 5 adjustment points, 

the vector PCA models with 3 and 5 adjustment points, and the 2D PCA models with 2, 3, or 

5 adjustment points. These changes were 0.1 mm – 0.3 mm representing 1.2% – 7.3% of the 

median error of the corresponding static model. 

The relative decrease in forecast error achieved by selection of the linear or median 

models of the spherical harmonic descriptor with no adjustment points was considerably 

smaller than that achieved with the addition of adjustment points in Specific Aim 2. 
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Figure 93: Change in forecast error from the static model to the linear model with an equal 

number of adjustment points – Spherical harmonic GTV morphology descriptor. Statistical p-

values are included below each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 

to 90
th

 percentile. 
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Figure 94: Change in forecast error from the static model to the mean model with an equal 

number of adjustment points – Spherical harmonic GTV morphology descriptor. Statistical p-

values are included below each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 

to 90
th

 percentile. 
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Figure 95: Change in forecast error from the static model to the median model with an equal 

number of adjustment points – Spherical harmonic GTV morphology descriptor. Statistical p-

values are included below each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 

to 90
th

 percentile. 
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Figure 96: Change in forecast error from the static model to the vector PCA model with an 

equal number of adjustment points – Spherical harmonic GTV morphology descriptor. 

Statistical p-values are included below each box. Box range is 25
th

 to 75
th

 percentile; whisker 

range is 10
th

 to 90
th

 percentile. 
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Figure 97: Change in forecast error from the static model to the 2D PCA model with an equal 

number of adjustment points – Spherical harmonic GTV morphology descriptor. Statistical p-

values are included below each box. Box range is 25
th

 to 75
th

 percentile; whisker range is 10
th

 

to 90
th

 percentile. 
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4.3. Reconstructed forecast morphology 

To visualize the analysis above, forecasts of the spherical harmonic GTV morphology 

descriptor from select models were imported into a treatment planning system and compared 

with the actual anatomy and tumor morphology of that fraction for a single example patient. 

In Figure 98, the forecast for the 32
nd

 treatment fraction according to the static models 

with 0, 1, and 5 adjustment points is depicted with respect to the patient anatomy of that 

fraction. The blue contour of the forecast from the static model with 5 adjustment points 

conforms to the actual morphology (represented by the sky blue color wash) more closely 

than the yellow contour of the static model with 1 adjustment point. The yellow contour, in 

turn, more closely approximates the actual tumor morphology than the red contour of the 

static model with no adjustment points. This matches the observation that the forecast 

accuracy improves with the increasing number of adjustment points. A region of the GTV 

may not monotonically approach the actual morphology because the model accuracy was 

measured for the morphology as a whole. 

In Figure 99, the forecast for the 32
nd

 treatment fraction according to the static and linear 

models with no adjustment points is depicted with respect to the patient anatomy of that 

fraction. The blue contour of the forecast from the linear model conforms to the actual 

morphology more closely than the red contour of the static model. This improvement is most 

apparent in Figure 99A where the static model forecast extends substantially into the hyoid 

bone. Even for the morphology forecast from the linear model, some discrepancies remain. 

But imperfect conformality is to be expected because, with no adjustment points, neither 

forecast incorporated patient-specific information acquired during treatment. These 

predictions were therefore, in effect, determined at the time of the original planning CT. 
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Figure 98: Forecast contours of static models with different numbers of adjustment points. 

The forecasts are depicted on an (A) axial image, (B) sagittal image, and (C) coronal image 

of the anatomy observed at treatment fraction 32. Sky blue color wash: original GTV contour 

deformed to treatment fraction 32, considered ground truth. Red contour: forecast 

morphology according to the static model with no adjustment points. Yellow contour: 

forecast morphology according to the static model with a single adjustment point at fraction 

16. Dark blue contour: forecast morphology according to the static model with 5 adjustment 

points. 
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Figure 99: Forecast contours of static and linear models with no adjustment points. The 

forecasts are depicted on an (A) axial image, (B) sagittal image, and (C) coronal image of the 

anatomy observed at treatment fraction 32. Sky blue color wash: original GTV contour 

deformed to treatment fraction 32, considered ground truth. Red contour: forecast 

morphology according to the static model with no adjustment points. Dark blue contour: 

forecast morphology according to the linear model with no adjustment points. 
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Chapter 5 

DISCUSSION 

The accuracy in forecasting tumor volume, position, and morphology throughout 

radiation therapy was evaluated using several model types and model parameter 

adjustment schemes. Non-static models and models that included parameter 

adjustment points were both observed to improve the ability to predict these tumor 

variables. These effects are logical. Parameters of the non-static models were 

determined based on similar patients, incorporating population-based prior 

information into the predictions. Meanwhile, adjusting model parameters to match the 

observed response of the patient being treated incorporated patient-specific prior 

information. Each of the four descriptor variables that were studied exhibited its own 

dependence of forecast accuracy on model type and number of adjustment points. 

These relationships are discussed individually below. 

The GTV volume descriptor demonstrated an improvement in forecast accuracy for 

models that included any number of adjustment points. Relative to models with no 

adjustment points, those with a single adjustment point provided a 12.9% – 30.0% 

improvement. This exceeded the 10% improvement stated in the hypothesis of Specific 

Aim 1. The hypothesis was therefore accepted as it pertained to the GTV volume 

descriptor. Forecast accuracy continued to improve with additional adjustment points. 

This was also logical as the models were being adjusted to match the correct feature 

vector values with increasing frequency. 

For models of the GTV volume with no adjustment points, non-static models 

provided a 54.2% – 58.0% improvement compared to the static model. This far 
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exceeded the 10% improvement stated in the hypothesis for Specific Aim 3. Therefore 

this hypothesis, too, was accepted with respect to the GTV volume descriptor. 

Among non-static model types, there did not appear to be substantial variation in 

the forecast error due to type. However, the large number of direct statistical 

comparisons was not performed. With respect to model type selection, the forecast 

accuracy was improved simply by selecting any one of the non-static models. 

The linear model was the simplest non-static model with the fewest parameters 

and required the least amount of information from the training dataset. Nonetheless, it 

achieved forecast accuracy comparable to that of the other non-static models. This 

suggests that the added complexity of the other non-static models was not necessary. 

That the flexibility of the other non-static models, originally considered capable of 

modeling more nuanced changes in GTV volume, did not translate into improved 

forecasts could be due to a number of effects. The more complex models may not have 

been able to realize their potential of depicting non-linear trends across the training 

dataset if sufficient variation existed in the changing tumor volumes. In addition, 

lacking the flexibility of the more complex models may actually have improved the 

forecast accuracy of the linear model. The constraint of a constant rate of change could 

have made the linear model more robust to variations among the training dataset, and 

thus more generalizable when applied to a new patient. 

Alternatively, changes in GTV volume may have been modeled by the set of linear 

models sufficiently accurately so that non-linear models failed to add substantial 

benefit. Barker et al. considered the changing volume of oropharyngeal tumors as 

linear, but observed the rate of change was not constant.18 Non-constant rates of change 
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could effectively be described using the linear models presented here with the inclusion 

of adjustment points. The ability to adjust the rate of change at one or more points 

might provide sufficient accuracy and render the added complexity of the non-linear 

models unnecessary. 

For the GTV volume descriptor, the improvement in forecast accuracy from 

selection of a non-static model type was greater than that achieved by adding an 

adjustment point. However, incorporating both strategies had an even greater effect on 

forecast accuracy. 

Considering all model types, the addition of a single adjustment point to models of 

the GTV centroid position improved the forecast accuracy by 27.0% – 34.1% relative to 

models with no adjustment points. This was greater than the 10% stated in the 

hypothesis for Specific Aim 1. Therefore, the hypothesis of Specific Aim 1 was accepted 

with respect to GTV centroid position descriptor, as it was for the GTV volume 

descriptor.  

Unlike for the GTV volume descriptor, however, the marginal improvement in 

forecast accuracy due to adding subsequent adjustment points clearly diminished with 

each successive adjustment point. This effect is again logical as the increased number of 

adjustment points limited the opportunity for the predicted values to drastically 

diverge from the actual values. This diminishing effect is important because the clinical 

implementation of such adjustment points is not trivial. In generating the models 

presented here, parameters were simply adjusted to match recently observed values of 

the feature vectors. Clinically, this corresponds to adapting a patient’s treatment. This 

requires the patient to receive additional imaging exams costing time and money as 
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well as exposure to greater radiation dose. Furthermore, altering the patient’s 

treatment in order to adapt to the more recent images requires significant time and 

effort on behalf of the clinicians. These costs must be weighed against the perceived 

potential clinical benefit. 

That the improvement in GTV centroid position forecast accuracy diminished with 

additional adjustment points suggests that there may be an optimal number of 

adjustment points – one where the improvement in accuracy outweighs the cost of 

adjusting the treatment, while additional adjustments would not be justified. It is 

beyond the scope of this work to determine the optimal number of patient treatment 

adjustments. This is clinical decision that requires the expertise of the radiation 

oncologist and consideration of the individual patient. 

Model type did not have a large impact on forecast accuracy for models of GTV 

centroid position. Most of the differences between non-static and static models with an 

equal number of adjustment points were not statistically significant. The differences 

that were significant (0.9% – 5.1% relative to the corresponding static model) were less 

than the 10% stated in the hypothesis for Specific Aim 3. Therefore, unlike for the GTV 

volume descriptor, the hypothesis of Specific Aim 3 was rejected for the GTV centroid 

position descriptor. Adding adjustment points proved to be the more effective way to 

improve forecast accuracy for this descriptor. 

For all model types, adding adjustment points to models of the radial extent GTV 

morphology descriptor improved the forecast accuracy by 27.5% – 33.8% compared to 

models with no adjustment points. This was greater than the 10% improvement stated 

in the hypothesis for Specific Aim 2, which was therefore accepted. As observed for 
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models of the GTV centroid position, the marginal improvement in forecast accuracy for 

models of the radial extent descriptor diminished with each additional adjustment 

point. This again suggests that the improvement achieved with the addition of some 

adjustment points may not always be worth the effort of adjusting a patient’s treatment. 

For models with no adjustment points, non-linear models provided a 3.8% – 5.9% 

improvement in forecast accuracy compared to the static model. This was less than the 

10% required to accept the hypothesis of Specific Aim 4, which was therefore rejected 

with respect to the radial extent descriptor. 

The improvement in forecast accuracy acquired through the addition of adjustment 

points was considerably greater than that provided by the non-static models. This 

implies that for the radial extent descriptor, a greater clinical benefit is to be achieved 

by re-imaging the patient and re-optimizing the treatment plan than by assuming a non-

static model type. Though small, there was an additional benefit of using a non-static 

model type in addition to adjusting the model parameters. 

The forecast accuracy of models of the spherical harmonic GTV morphology 

descriptor varied with the number of adjustment points in a way similar to those of the 

radial extent descriptor. The addition of any number of adjustment points resulted in a 

significant improvement in forecast accuracy for all model types. Even a single 

adjustment point resulted in a 28.6% – 33.0% improvement compared to the models 

with no adjustment points. This was greater than the 10% stated in the hypothesis for 

Specific Aim 2. The hypothesis was therefore accepted with respect to the spherical 

harmonic descriptor in addition to the radial extent descriptor. Furthermore, the 

marginal improvement of successive adjustment point again exhibited a diminishing 
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effect, suggesting a limit to the number of adjustments that would be clinically 

justifiable when using these models. 

For models of the spherical harmonic descriptor with no adjustment points, only 

the linear and median models resulted in a significant improvement in forecast 

accuracy compared to the static model (4.7% and 5.1%, respectively). These 

improvements were less than 10% needed to accept the hypothesis of Specific Aim 4. 

This hypothesis was therefore rejected for the spherical harmonic descriptor, as it was 

for the radial extent descriptor. 

It is unclear why the improvement in forecast accuracy offered by non-static 

models based on the spherical harmonic descriptor was more sensitive to model 

selection. Both morphology descriptors were capable of closely approximating tumor 

morphology. One advantage of the spherical harmonic descriptor was that it efficiently 

represented an entire surface, not just the position of the surface landmarks. However, 

when generating the spherical harmonic feature vector, the intermediate step of 

projecting distances onto the spherical harmonic basis may have made this descriptor 

less appropriate for comparing changes in morphology. The radial extent feature vector 

directly reflected the original data of the distances between the GTV centroid and 

surface landmarks. Compared to a feature vector of spherical harmonic coefficients, 

transferring information regarding changes in these distances was more intuitive and 

less subject to exaggerated effects of small changes. As a result, the radial extent 

descriptor may have been more consistent and more useful when not merely describing 

morphology, but transferring information regarding changes in morphology. 
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As depicted in Table III, the hypotheses of Specific Aim 1 and Specific Aim 2 were 

accepted for both reductive descriptors and both generative descriptors, respectively. 

The hypothesis of Specific Aim 3 was accepted for the GTV volume descriptor but not 

for the GTV centroid position descriptor, and that of Specific Aim 4 was rejected for 

both generative descriptors. Overall, these results support the Principal Hypothesis:  

Longitudinal trends in the volume, position, and morphology of 

head and neck tumors can be derived from previous patients 

and applied to reduce the error in forecasting these variables 

during the treatment of a new patient by 10% compared to the 

original planning CT. (Chapter 2) 

Although the improvement in forecast accuracy from a non-static model alone was 

small for each descriptor variable other than GTV volume, the addition of a single 

adjustment point, either alone or in conjunction with a non-static model, was more than 

enough to improve the forecast accuracy by the 10% stated in the hypothesis. 

 

 

Table III: Summary of the results for the four Specific Aims. () or () denotes that the 

improvement was greater than or less than 10% resulting in the acceptance or rejection of the 

specific aim hypothesis, respectively. 

 

Effect of: Reductive Descriptors Generative Descriptors 

Single 
Adjustment 
point  

Specific Aim 1: 

 GTV volume 

 GTV centroid position 

Specific Aim 2: 

 Radial extent GTV morphology 

 Spherical harmonic 
       GTV morphology 

Non-static 
Model 

Specific Aim 3: 

 GTV volume 

  GTV centroid position  

Specific Aim 4: 

 Radial extent GTV morphology 

 Spherical harmonic 
      GTV morphology 
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Tumors analyzed in this work were derived from patients on a clinical protocol. 

The patients were required to meet the protocol’s selection criteria, and therefore had 

very similar diseases and treatments. This homogeneity was important in identifying 

patterns in treatment response and generating meaningful models. However, the 

patterns cannot be presumed to apply to dissimilar patients. Patients with different 

diseases or treatments may respond quite different than those used to derive the 

models presented here. It is therefore inappropriate to generalize the results presented 

here and apply them to a different patient population. It is also possible that the 

treatment response exhibited by these patients is better described by separating the 

patients into two or more sub-categories. Were these sub-categories identified, and 

were a patient to be accurately classified, models specific to each sub-category might 

further improve the forecast accuracy. 

Models presented here were based only on tumor volume, position, or morphology. 

However, many factors contribute to determine how an individual patient responds to 

treatment, and the inclusion of clinical and dosimetric parameters might further 

improve forecast accuracy. For example, HPV status has been shown to be a strong, 

independent prognostic indicator of survival for oropharyngeal cancer patients.77 

Models that incorporate HPV status might therefore reduce the uncertainty associated 

with the predicted values of tumor variables. 

Of the tumor variables considered, the GTV volume and centroid position are 

restricted in their application due to their inherent reductive nature. Their utility is 

primarily to serve as an indicator of significant anatomic change. This may result in re-

imaging the patient and altering their treatment management. 
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The limited application of the reductive descriptor variables was the impetus for 

considering generative models of tumor morphology. The radial extent and spherical 

harmonic GTV morphology descriptors were both based on discrete sampling of the 

GTV surfaces. The 614 surface landmarks only approximated the GTV surface. 

Nonetheless this approximation was considered sufficient to observe the primary 

changes in tumor morphology. 

Generative descriptors have been used previously to describe tumor shape. 

However, these applications do not include the prediction of longitudinal changes. 

Takao et al. measured changes in cervical lymph nodes using finite element models. 

However, they only allude to predicting these changes indirectly through models of 

lymph node volumes that assume uniform shrinkage.53 With no predictive models of 

tumor morphology described previously, the accuracy of the models presented here 

cannot be compared directly with any other. Models of reductive descriptors and 

models quantifying random variations in tumor shape are not equivalent, and 

comparisons with them are not appropriate. 

Methods described here are not limited to representing longitudinal changes in 

tumors of the oropharynx. Radial extent and spherical harmonic descriptors can be 

used to quantify random or systematic variations in addition to longitudinal ones, 

though predictive models would no longer be pertinent. In addition to tumors of the 

oropharynx, these descriptors can also model the morphology of nearby organs at risk, 

such as the parotid glands, as well as organs of other anatomic sites. Different organs at 

different sites will exhibit unique anatomic variations. However, as the morphology 

descriptors simultaneously represent size, shape, and position, they could model the 
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periodic changes of a lung tumor due to respiratory motion as well as the random 

changes of a prostate due to filling of the bladder and rectum. Furthermore, as these 

descriptors fundamentally represent changes in the configuration of a set of landmarks, 

they need not represent a specific or single organ at all. The relative position of any set 

of anatomic points of interest could be represented using methods similar to those 

presented here. 

Predictions made by the models presented here are intended to augment, not 

supplant, images of the patient acquired during the course of treatment. In fact, the 

results demonstrated the value of considering updated patient-specific information. 

However, the value of these models is in expanding the understanding of changes in the 

tumor when such imaging is not available or during the period between such images. 

While uncertainty remains regarding predictions of a system as complex as a 

patient’s response to radiation therapy, the ability of these models to describe changes 

in tumor variables could be used in numerous ways. Prior to the start of treatment for a 

new patient, predictive models could anticipate the patient’s response to treatment. The 

predictions of the morphology descriptors could be visualized relative to the patient’s 

anatomy or to a proposed dose distribution, which could inform clinicians’ decisions 

regarding patient management. For example, were models to predict tumor motion 

towards a radiosensitive organ at risk, or large variability in tumor morphology in a 

region of steep dose gradients, the original treatment plan might be adjusted. The 

models might also reveal the importance of subsequent imaging along with the 

appropriate number and timing of related interventions. In principle, it could even be 

possible to generate treatment plans based on these predictions. This could be a single 
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plan optimized to the changing tumor morphology, or a set of re-plans to be 

administered later during treatment. Regardless of how they are precisely used, these 

plans are generated based on yet un-realized configurations of the tumor and anatomy. 

This treatment management strategy can therefore be considered a form of 

anticipatory adaptive radiation therapy. 

Applications of these models persist during treatment. For example, the observed 

changes in anatomy could be compared against the predictions made by the models. 

The updated patient-specific information could be used to adjust the model forecast, as 

demonstrated here, or to determine if a patient is responding as expected or desired. If 

not, clinicians would have the opportunity to intervene. 

Lastly, models of these tumor variables remain useful even after treatment is 

completed. The models can be used to interpolate between any mid-treatment images 

that were acquired, creating a record that logs the patient’s approximate treatment 

response. As a more complete depiction of patient anatomy and treatment dosimetry, 

this characterization of treatment response could be compared with those of other 

patients or combined with other clinical parameters for subsequent research studies. 
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Chapter 6 

CONCLUSION 

The work presented here demonstrates the ability to predict changes in tumor 

volume, position, and morphology throughout treatment from a patient’s planning CT. 

Several model types were combined with numerous model adjustment schemes to 

improve the forecast accuracy compared to conventional descriptions that assume no 

change. The predictive models can be incorporated into the treatment planning process 

or used by clinicians to make more informed treatment management decisions. A more 

complete characterization of treatment response offered by these models can also be 

incorporated into future research studies. Of course, uncertainty and error remain in 

predictions of these models. However, the work presented here contributes to the 

complexity with which the dynamic response of a patient to radiation therapy can be 

represented. Further investigation to discern the full potential of integrating 

comprehensive, dynamic measures of anatomic variability into radiation therapy is 

encouraged. 
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