4,304 research outputs found
High-resolution mapping of heteroduplex DNA formed during UV-induced and spontaneous mitotic recombination events in yeast.
In yeast, DNA breaks are usually repaired by homologous recombination (HR). An early step for HR pathways is formation of a heteroduplex, in which a single-strand from the broken DNA molecule pairs with a strand derived from an intact DNA molecule. If the two strands of DNA are not identical, there will be mismatches within the heteroduplex DNA (hetDNA). In wild-type strains, these mismatches are repaired by the mismatch repair (MMR) system, producing a gene conversion event. In strains lacking MMR, the mismatches persist. Most previous studies involving hetDNA formed during mitotic recombination were restricted to one locus. Below, we present a global mapping of hetDNA formed in the MMR-defective mlh1 strain. We find that many recombination events are associated with repair of double-stranded DNA gaps and/or involve Mlh1-independent mismatch repair. Many of our events are not explicable by the simplest form of the double-strand break repair model of recombination
Mechanical properties of Zr_(57)Nb_5Al_(10)Cu_(15.4)Ni_(12.6) metallic glass matrix particulate composites
To increase the toughness of a metallic glass with the nominal composition Zr_(57)Nb_5Al_(10)Cu_(15.4)Ni_(12.6), it was used as the matrix in particulate composites reinforced with W, WC, Ta, and SiC. The composites were tested in compression and tension experiments. Compressive strain to failure increased by more than 300% compared with the unreinforced Zr_(57)Nb_5Al_(10)Cu_(15.4)Ni_(12.6), and energy to break of the tensile samples increased by more than 50%. The increase in toughness came from the particles restricting shear band propagation, promoting the generation of multiple shear bands and additional fracture surface area. There was direct evidence of viscous flow of the metallic glass matrix within the confines of the shear bands
The safety and efficacy of mesenchymal stem cells for prevention or regeneration of intervertebral disc degeneration: a systematic review
General Posters: abstract no. GP86INTRODUCTION: Mesenchymal stem cells (MSCs) have been used to halt the progression or regenerate the disc with hopes to prevent or treat discogenic back pain. However, the safety and efficacy of the use of MSCs for such treatment in animal and human models at short and long term assessment (i.e. greater than 48 weeks) have not been systematically addressed. This study addressed a systematic review of comparative controlled studies addressing the use of MSCs to that of no treatment/saline for the treatment of disc degeneration. METHODS: Online databases were extensively searched. Controlled trials in animal models and humans were eligible for inclusion. Trial design, MSC characteristics, injection method, disc assessment, outcome intervals, and complication events were assessed. Validity of each study was assessed addressing trial design. Two individuals independently addressed the aforementioned. RESULTS: Twenty-two animal studies were included. No human comparative controlled trials were reported. All three types of MSCs (i.e. derived from bone marrow, synovial and adipose tissue) showed successful inhibition of disc degeneration progression. From three included studies, bone marrow derived MSC showed superior quality of disc repair when compared to other treatments, including TGF-β1, NP bilaminar co-culture and axial distraction regimen. However, osteophyte development was reported in two studies as potential complication of MSC transplantation. CONCLUSIONS: Based on animal models, the current evidence suggests that in the short-term MSC transplantation is safe and effective in halting disc degeneration; however, additional and larger studies are needed to assess the long-term regenerative effects and potential complications. Inconsistency in methodological design and outcome parameters prevent any robust conclusions. In addition, randomized controlled trials in humans are needed to assess the safety and efficacy of such therapy.published_or_final_versio
Structure of a model TiO2 photocatalytic interface
The interaction of water with TiO2 is crucial to many of its practical
applications, including photocatalytic water splitting. Following the first
demonstration of this phenomenon 40 years ago there have been numerous studies
of the rutile single-crystal TiO2(110) interface with water. This has provided
an atomic-level understanding of the water-TiO2 interaction. However, nearly
all of the previous studies of water/TiO2 interfaces involve water in the
vapour phase. Here, we explore the interfacial structure between liquid water
and a rutile TiO2(110) surface pre-characterized at the atomic level. Scanning
tunnelling microscopy and surface X-ray diffraction are used to determine the
structure, which is comprised of an ordered array of hydroxyl molecules with
molecular water in the second layer. Static and dynamic density functional
theory calculations suggest that a possible mechanism for formation of the
hydroxyl overlayer involves the mixed adsorption of O2 and H2O on a partially
defected surface. The quantitative structural properties derived here provide a
basis with which to explore the atomistic properties and hence mechanisms
involved in TiO2 photocatalysis
Modeling Analysis for NASA GRC Vacuum Facility 5 Upgrade
A model of the VF5 test facility at NASA Glenn Research Center was developed using the direct simulation Monte Carlo Hypersonic Aerothermodynamics Particle (HAP) code. The model results were compared to several cold flow and thruster hot fire cases. The main uncertainty in the model is the determination of the effective sticking coefficient -- which sets the pumping effectiveness of the cryopanels and oil diffusion pumps including baffle transmission. An effective sticking coefficient of 0.25 was found to provide generally good agreement with the experimental chamber pressure data. The model, which assumes a cold diffuse inflow, also fared satisfactorily in predicting the pressure distribution during thruster operation. The model was used to assess other chamber configurations to improve the local effective pumping speed near the thruster. A new configuration of the existing cryopumps is found to show more than 2x improvement over the current baseline configuration
Instantonic approach to triple well potential
By using a usual instanton method we obtain the energy splitting due to
quantum tunneling through the triple well barrier. It is shown that the term
related to the midpoint of the energy splitting in propagator is quite
different from that of double well case, in that it is proportional to the
algebraic average of the frequencies of the left and central wells.Comment: Revtex, 11 pages, Included one eps figur
Performance of domestic and foreign-invested enterprises in China
Despite increasing attention paid to China's enterprise reform since the late 1970s, relatively little is known about the performance of reformed state-owned enterprises (SOEs) and newly formed private firms vis-à-vis foreign firms in China. In this study, we examine the performance of domestic Chinese firms in various ownership categories versus foreign-invested enterprises (FIEs) based on two nation-wide surveys conducted by the National Bureau of Statistics in 1998 and 2002. We found that both domestic non-state-owned firms and foreign-invested enterprises performed better than state-owned enterprises. Meanwhile, three categories of Chinese firms-privately owned, collectively owned, and shareholding-had higher performance levels than the foreign-invested enterprises. © 2005 Elsevier Inc. All rights reserved.postprin
- …
