39,223 research outputs found

    Do we need to know the temperature in prestellar cores?

    Full text link
    Molecular line observations of starless (prestellar) cores combined with a chemical evolution modeling and radiative transfer calculations are a powerful tool to study the earliest stages of star formation. However, conclusions drawn from such a modeling may noticeably depend on the assumed thermal structure of the cores. The assumption of isothermality, which may work well in chemo-dynamical studies, becomes a critical factor in molecular line formation simulations. We argue that even small temperature variations, which are likely to exist in starless cores, can have a non-negligible effect on the interpretation of molecular line data and derived core properties. In particular, ``chemically pristine'' isothermal cores (low depletion) can have centrally peaked C18^{18}O and C34^{34}S radial intensity profiles, while having ring-like intensity distributions in models with a colder center and/or warmer envelope assuming the same underlying chemical structure. Therefore, derived molecular abundances based on oversimplified thermal models may lead to a mis-interpretation of the line data.Comment: ApJL, accepte

    The Spin(7)Spin(7)-structures on complex line bundles and explicit Riemannian metrics with SU(4)-holonomy

    Full text link
    We completely explore the system of ODE's which is equivalent to the existence of a parallel Spin(7)Spin(7)-structure on the cone over a 7-dimensional 3-Sasakian manifold. The one-dimensional family of solutions of this system is constructed. The solutions of this family correspond to metrics with holonomy SU(4) which generalize the Calabi metrics.Comment: 11 page

    Density Functional Theory versus the Hartree Fock Method: Comparative Assessment

    Full text link
    We compare two different approaches to investigations of many-electron systems. The first is the Hartree-Fock (HF) method and the second is the Density Functional Theory (DFT). Overview of the main features and peculiar properties of the HF method are presented. A way to realize the HF method within the Kohn-Sham (KS) approach of the DFT is discussed. We show that this is impossible without including a specific correlation energy, which is defined by the difference between the sum of the kinetic and exchange energies of a system considered within KS and HF, respectively. It is the nonlocal exchange potential entering the HF equations that generates this correlation energy. We show that the total correlation energy of a finite electron system, which has to include this correlation energy, cannot be obtained from considerations of uniform electron systems. The single-particle excitation spectrum of many-electron systems is related to the eigenvalues of the corresponding KS equations. We demonstrate that this spectrum does not coincide in general with the eigenvalues of KS or HF equations.Comment: 16 pages, Revtex, no figure

    Pulse-pumped double quantum dot with spin-orbit coupling

    Full text link
    We consider the full driven quantum dynamics of a qubit realized as spin of electron in a one-dimensional double quantum dot with spin-orbit coupling. The driving perturbation is taken in the form of a single half-period pulse of electric field. Spin-orbit coupling leads to a nontrivial evolution in the spin and charge densities making the dynamics in both quantities irregular. As a result, the charge density distribution becomes strongly spin-dependent. The transition from the field-induced tunneling to the strong coupling regime is clearly seen in the charge and spin channels. These results can be important for the understanding of the techniques for the spin manipulation in nanostructures.Comment: 6 figure
    corecore