20,951 research outputs found
Policies And International Integration: Influences On Trade And Foreign Direct Investment
This paper assesses the importance of border and non-border policies for global economic integration. The focus is on four widely-advocated policies: removing explicit restrictions to trade and FDI; promoting domestic competition; improving the adaptability of labour markets; and ensuring adequate levels of infrastructure capital. The analysis covers FDI and trade in both goods and services, thus aiming to account for the most important channels of globalisation and dealing with most modes of cross-border services supply. It first describes trends in trade, FDI and the four sets of policies using a large set of structural policy indicators recently constructed by the OECD, including the new summary indicators for FDI-specific regulations described in Golub (2003). It then estimates the impact of policies on bilateral trade and bilateral and multilateral FDI. The results highlight that, despite extensive liberalisation over the past two decades, there is scope for further reducing policy barriers to integration of OECD markets. Remaining barriers have a significant impact on trade and FDI, with anticompetitive domestic regulations and restrictive labour market arrangements estimated to curb integration as much as explicit trade and FDI restrictions. Simulating the removal of such barriers suggests that the quantitative effects of further liberalisation of trade, FDI and domestic product and labour markets on global integration could be substantial
The Mre11-Rad50-Nbs1 complex mediates activation of TopBP1 by ATM
The activation of ATR-ATRIP in response to double-stranded DNA breaks (DSBs) depends upon ATM in human cells and Xenopus egg extracts. One important aspect of this dependency involves regulation of TopBP1 by ATM. In Xenopus egg extracts, ATM associates with TopBP1 and thereupon phosphorylates it on S1131. This phosphorylation enhances the capacity of TopBP1 to activate the ATR-ATRIP complex. We show that TopBP1 also interacts with the Mre11-Rad50-Nbs1 (MRN) complex in egg extracts in a checkpoint-regulated manner. This interaction involves the Nbs1 subunit of the complex. ATM can no longer interact with TopBP1 in Nbs1-depleted egg extracts, which suggests that the MRN complex helps to bridge ATM and TopBP1 together. The association between TopBP1 and Nbs1 involves the first pair of BRCT repeats in TopBP1. In addition, the two tandem BRCT repeats of Nbs1 are required for this binding. Functional studies with mutated forms of TopBP1 and Nbs1 suggested that the BRCT-dependent association of these proteins is critical for a normal checkpoint response to DSBs. These findings suggest that the MRN complex is a crucial mediator in the process whereby ATM promotes the TopBP1-dependent activation of ATR-ATRIP in response to DSBs
Criterion for transformation of transverse domain wall to vortex or antivortex wall in soft magnetic thin-film nanostripes
We report on the criterion for the dynamic transformation of the internal
structure of moving domain walls (DWs) in soft magnetic thin-film nanostripes
above the Walker threshold field, Hw. In order for the process of
transformation from transverse wall (TW) to vortex wall (VW) or antivortex wall
(AVW) occurs, the edge-soliton core of the TW-type DW should grow sufficiently
to the full width at half maximum of the out-of-plane magnetizations of the
core area of the stabilized vortex (or antivortex) by moving inward along the
transverse (width) direction. Upon completion of the nucleation of the vortex
(antivortex) core, the VW (AVW) is stabilized, and then its core accompanies
the gyrotropic motion in a potential well (hill) of a given nanostripe. Field
strengths exceeding the Hw, which is the onset field of DW velocity breakdown,
are not sufficient but necessary conditions for dynamic DW transformation
FUS-mediated functional neuromodulation for neurophysiologic assessment in a large animal model
Electroweak phase transition in a nonminimal supersymmetric model
The Higgs potential of the minimal nonminimal supersymmetric standard model
(MNMSSM) is investigated within the context of electroweak phase transition. We
investigate the allowed parameter space yielding correct electroweak phase
transitoin employing a high temperature approximation. We devote to
phenomenological consequences for the Higgs sector of the MNMSSM for
electron-positron colliders. It is observed that a future linear
collider with GeV will be able to test the model with regard
to electroweak baryogenesis.Comment: 28 pages, 5 tables, 12 figure
Unsupervised Holistic Image Generation from Key Local Patches
We introduce a new problem of generating an image based on a small number of
key local patches without any geometric prior. In this work, key local patches
are defined as informative regions of the target object or scene. This is a
challenging problem since it requires generating realistic images and
predicting locations of parts at the same time. We construct adversarial
networks to tackle this problem. A generator network generates a fake image as
well as a mask based on the encoder-decoder framework. On the other hand, a
discriminator network aims to detect fake images. The network is trained with
three losses to consider spatial, appearance, and adversarial information. The
spatial loss determines whether the locations of predicted parts are correct.
Input patches are restored in the output image without much modification due to
the appearance loss. The adversarial loss ensures output images are realistic.
The proposed network is trained without supervisory signals since no labels of
key parts are required. Experimental results on six datasets demonstrate that
the proposed algorithm performs favorably on challenging objects and scenes.Comment: 16 page
Inner Space Preserving Generative Pose Machine
Image-based generative methods, such as generative adversarial networks
(GANs) have already been able to generate realistic images with much context
control, specially when they are conditioned. However, most successful
frameworks share a common procedure which performs an image-to-image
translation with pose of figures in the image untouched. When the objective is
reposing a figure in an image while preserving the rest of the image, the
state-of-the-art mainly assumes a single rigid body with simple background and
limited pose shift, which can hardly be extended to the images under normal
settings. In this paper, we introduce an image "inner space" preserving model
that assigns an interpretable low-dimensional pose descriptor (LDPD) to an
articulated figure in the image. Figure reposing is then generated by passing
the LDPD and the original image through multi-stage augmented hourglass
networks in a conditional GAN structure, called inner space preserving
generative pose machine (ISP-GPM). We evaluated ISP-GPM on reposing human
figures, which are highly articulated with versatile variations. Test of a
state-of-the-art pose estimator on our reposed dataset gave an accuracy over
80% on PCK0.5 metric. The results also elucidated that our ISP-GPM is able to
preserve the background with high accuracy while reasonably recovering the area
blocked by the figure to be reposed.Comment: http://www.northeastern.edu/ostadabbas/2018/07/23/inner-space-preserving-generative-pose-machine
An intent-based network virtualization platform for SDN
© 2016 IFIP. Currently, the Software Defined Networking (SDN) paradigm has attracted significant interests from industry and academia as a future network architecture. SDN brings many benefits to network operations and management including programmability, agility, elasticity, and flexibility. With SDN and OpenFlow, one of the promising SDN protocols, software defined Network Virtualization (NV) techniques can be designed and implemented via flow table segmentation to provision independent virtual networks (VNs). In this paper, we propose an intent based virtual network management platform based on software defined NV. The objective of the proposed NV platform is to automate the management and configuration of virtual networks based on high level tenant requirement specifications, called intents. The design and implementation of the platform is based on ONOS, an open-source SDN controller, and OpenVirteX, a network hypervisor. The platform is designed to provide multiple VNs over the same physical infrastructure to multiple tenants
Unexpected Behavior of the Local Compressibility Near the B=0 Metal-Insulator Transition
We have measured the local electronic compressibility of a two-dimensional
hole gas as it crosses the B=0 Metal-Insulator Transition. In the metallic
phase, the compressibility follows the mean-field Hartree-Fock (HF) theory and
is found to be spatially homogeneous. In the insulating phase it deviates by
more than an order of magnitude from the HF predictions and is spatially
inhomogeneous. The crossover density between the two types of behavior, agrees
quantitatively with the transport critical density, suggesting that the system
undergoes a thermodynamic change at the transition.Comment: As presented in EP2DS-13, Aug. 1999. (4 pages, 4 figures
- …
