15 research outputs found

    An experimental investigation into resonance dry grinding of hardened steel and nickel alloys with element of MQL

    Get PDF
    Current policies on environmental issues put extra pressures on manufacturing processes to be resource efficient and eco-friendly. However, in grinding processes, large amounts of cutting fluids are used. These fluids are not environmental friendly thus require proper management before disposal with associated cost. Hence, this work sets to explore low-frequency vibration in grinding in order to improve coolant application in conventional grinding at the first stage with the aim to introduce this into high efficiency deep grinding (HEDG) at latter stage. An attempt is made to grind nickel alloys with minimum quantity lubricant (MQL) as oppose to flood cooling. To achieve this with minimum alterations to the machine tool, a piezo-driven workpiece holder was developed for surface grinding. This simple innovative workpiece holder allowed oscillating during actual grinding process. However, this paper presents the results of low-frequency oscillatory grinding in dry and near-dry conditions. The response of the machine tool spindle unit is presented alongside with the workpiece holder response. In this investigation, hardened steels and nickel alloys were ground with vibration assistance. The grinding forces are illustrated together with the surface finish. The wheel performance is given in terms of grinding ratio

    Tribology of Composite Materials and Coatings in Manufacturing

    No full text
    The chapter presents studies regarding the tribological performance of composite materials and multilayer composite coated tools in manufacturing processes carried out by the authors. Two manufacturing processes were investigated—metal forming and metal cutting. In metal forming, the study aimed to explore lubricant-free forming utilizing multilayer DLC composite hard coating as the potential tool coating. The experimental studies on the coating include characterization of the coating, and tribological analysis of the coating using commercially available pin-on-disk, laboratory tribology simulative test and industrial ironing of stainless steel. In order to examine the influence of temperature and contact pressure along the tool/workpiece interface on friction, Finite Element analysis was performed. Meanwhile, in metal cutting, two environmentally benign machining techniques were investigated to determine their potentials in delaying tool wear progression. First, sustainable machining by coupling multilayer ceramic composite coated-tool with cryogenic coolant as the cutting fluid. Second, the machining of Carbon Fibre Composite and Titanium alloys stacks using Ultrasonic Assisted Drilling (UAD) technique. Both techniques include investigations on machining conditions with varied cutting tool speeds. The examinations on the experimental results were focused on temperature, tool wear, surface integrity and metallurgical structure of near-surface region
    corecore