514 research outputs found

    In Situ Thermal Decomposition of Exfoliated Two-Dimensional Black Phosphorus

    Full text link
    With a semiconducting band gap and high charge carrier mobility, two-dimensional (2D) black phosphorus (BP), often referred to as phosphorene, holds significant promise for next generation electronics and optoelectronics. However, as a 2D material, it possesses a higher surface area to volume ratio than bulk BP, suggesting that its chemical and thermal stability will be modified. Herein, an atomic-scale microscopic and spectroscopic study is performed to characterize the thermal degradation of mechanically exfoliated 2D BP. From in situ scanning/transmission electron microscopy, decomposition of 2D BP is observed to occur at ~400 {\deg}C in vacuum, in contrast to the 550 {\deg}C bulk BP sublimation temperature. This decomposition initiates via eye-shaped cracks along the [001] direction and then continues until only a thin, amorphous red phosphorous like skeleton remains. In situ electron energy loss spectroscopy, energy-dispersive X-ray spectroscopy, and energy-loss near-edge structure changes provide quantitative insight into this chemical transformation process.Comment: In press: 4 figures in main manuscript, 27 pages with supporting informatio

    Experimental Demonstration of Unconditional Entanglement Swapping for Continuous Variables

    Full text link
    The unconditional entanglement swapping for continuous variables is experimentally demonstrated. Two initial entangled states are produced from two nondegenerate optical parametric amplifiers operating at deamplification. Through implementing the direct measurement of Bell-state between two optical beams from each amplifier the remaining two optical beams, which have never directly interacted with each other, are entangled. The quantum correlation degrees of 1.23dB and 1.12dB below the shot noise limit for the amplitude and phase quadratures resulting from the entanglement swapping are straightly measured.Comment: new versio

    Solvent Exfoliation of Electronic-Grade, Two-Dimensional Black Phosphorus

    Full text link
    Solution dispersions of two-dimensional (2D) black phosphorus (BP), often referred to as phosphorene, are achieved by solvent exfoliation. These pristine, electronic-grade BP dispersions are produced with anhydrous, organic solvents in a sealed tip ultrasonication system, which circumvents BP degradation that would otherwise occur via solvated oxygen or water. Among conventional solvents, n-methyl-pyrrolidone (NMP) is found to provide stable, highly concentrated (~0.4 mg/mL) BP dispersions. Atomic force microscopy, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy show that the structure and chemistry of solvent-exfoliated BP nanosheets are comparable to mechanically exfoliated BP flakes. Additionally, residual NMP from the liquid-phase processing suppresses the rate of BP oxidation in ambient conditions. Solvent-exfoliated BP nanosheet field-effect transistors (FETs) exhibit ambipolar behavior with current on/off ratios and mobilities up to ~10000 and ~50 cm^2/(V*s), respectively. Overall, this study shows that stable, highly concentrated, electronic-grade 2D BP dispersions can be realized by scalable solvent exfoliation, thereby presenting opportunities for large-area, high-performance BP device applications.Comment: 6 figures, 31 pages, including supporting informatio

    A Random Walk Model for Item Recommendation in Social Tagging Systems

    Get PDF
    Social tagging, as a novel approach to information organization and discovery, has been widely adopted in many Web 2.0 applications. Tags contributed by users to annotate a variety of Web resources or items provide a new type of information that can be exploited by recommender systems. Nevertheless, the sparsity of the ternary interaction data among users, items, and tags limits the performance of tag-based recommendation algorithms. In this article, we propose to deal with the sparsity problem in social tagging by applying random walks on ternary interaction graphs to explore transitive associations between users and items. The transitive associations in this article refer to the path of the link between any two nodes whose length is greater than one. Taking advantage of these transitive associations can allow more accurate measurement of the relevance between two entities (e.g., user-item, user-user, and item-item). A PageRank-like algorithm has been developed to explore these transitive associations by spreading users\u27 preferences on an item similarity graph and spreading items\u27 influences on a user similarity graph. Empirical evaluation on three real-world datasets demonstrates that our approach can effectively alleviate the sparsity problem and improve the quality of item recommendation

    Measurement of Volumetric Deformation, Strain Localization, and Shear Band Characterization during Triaxial Testing using a Photogrammetry-Based Method

    Get PDF
    Triaxial Testing Has Been Routinely Used as a Standard Laboratory Test that Allows Correct Determination of Soil Characteristics. Previously the Volumetric Strain of the Triaxial Specimen Was Considered to Be Uniformly Distributed Along with the Specimen during the Isotropic and Deviatoric Loading. Although This Assumption Might Hold True under Isotropic Loading, the Effects of Restrained Ends and Disturbance during the Procedures of Specimen Installation and Testing Can Cause Nonuniform Strains throughout the Whole Specimen. This Paper Investigates the Effects of Specimen Preparation and Misalignment on the Strain Uniformity Along with the Soil Specimen during Triaxial Testing. a Series of Consolidated Drained Tests at Several Stress Paths Were Conducted on Sand Specimens. a Photogrammetry-Based Method Was Applied at Different Stages of Specimen Preparation and Testing to Provide a Three-Dimensional Full-Field Deformation Measurement of the Surface of the Triaxial Soil Specimen. One Commercial Camera Was Used to Capture Images for the Triaxial Specimen, and a Developed Application for Data Processing and Post-Processing Was Utilized to Ensure Automatic and Fast Processing of the Developed Photogrammetric-Based Method. the Local Displacement Data Provided by the Photogrammetry-Based Method Enabled the Evaluation of the Strain Localization and the Volumetric Strain Nonuniformity Analysis at Different Heights Along with the Specimen. the Triaxial Test Results Demonstrated that the Soil Specimen during Triaxial Testing Has Deformed Nonuniformly in the Axial, Radial, and Circumferential Directions. the Plots of the Strain Localization Precisely Presented the Variation of Local Strains and the Magnitude of Deformation after the Saturation Stage. These Results Prove the Soil Specimen Volume is Not Constant during Saturation, and Unavoidable Disturbance Had Occurred during the Specimen Preparation Steps and Saturation. the Results Proved that the Specimen Misalignment during Triaxial Testing Leads to Scattering in the Triaxial Test Results. Further Discussion Was Presented About the Shear Band Characterization Including Shear Band Thickness, Formation, and Propagation
    corecore