813 research outputs found

    Pattern formation during the evaporation of a colloidal nanoliter drop: a numerical and experimental study

    Full text link
    An efficient way to precisely pattern particles on solid surfaces is to dispense and evaporate colloidal drops, as for bioassays. The dried deposits often exhibit complex structures exemplified by the coffee ring pattern, where most particles have accumulated at the periphery of the deposit. In this work, the formation of deposits during the drying of nanoliter colloidal drops on a flat substrate is investigated numerically and experimentally. A finite-element numerical model is developed that solves the Navier-Stokes, heat and mass transport equations in a Lagrangian framework. The diffusion of vapor in the atmosphere is solved numerically, providing an exact boundary condition for the evaporative flux at the droplet-air interface. Laplace stresses and thermal Marangoni stresses are accounted for. The particle concentration is tracked by solving a continuum advection-diffusion equation. Wetting line motion and the interaction of the free surface of the drop with the growing deposit are modeled based on criteria on wetting angles. Numerical results for evaporation times and flow field are in very good agreement with published experimental and theoretical results. We also performed transient visualization experiments of water and isopropanol drops loaded with polystyrene microsphere evaporating on respectively glass and polydimethylsiloxane substrates. Measured evaporation times, deposit shape and sizes, and flow fields are in very good agreement with the numerical results. Different flow patterns caused by the competition of Marangoni loops and radial flow are shown to determine the deposit shape to be either a ring-like pattern or a homogeneous bump

    Designing a Data Warehouse for Cyber Crimes

    Get PDF
    One of the greatest challenges facing modern society is the rising tide of cyber crimes. These crimes, since they rarely fit the model of conventional crimes, are difficult to investigate, hard to analyze, and difficult to prosecute. Collecting data in a unified framework is a mandatory step that will assist the investigator in sorting through the mountains of data. In this paper, we explore designing a dimensional model for a data warehouse that can be used in analyzing cyber crime data. We also present some interesting queries and the types of cyber crime analyses that can be performed based on the data warehouse. We discuss several ways of utilizing the data warehouse using OLAP and data mining technologies. We finally discuss legal issues and data population issues for the data warehouse

    Designing a Data Warehouse for Cyber Crimes

    Get PDF
    One of the greatest challenges facing modern society is the rising tide of cyber crimes. These crimes, since they rarely fit the model of conventional crimes, are difficult to investigate, hard to analyze, and difficult to prosecute. Collecting data in a unified framework is a mandatory step that will assist the investigator in sorting through the mountains of data. In this paper, we explore designing a dimensional model for a data warehouse that can be used in analyzing cyber crime data. We also present some interesting queries and the types of cyber crime analyses that can be performed based on the data warehouse. We discuss several ways of utilizing the data warehouse using OLAP and data mining technologies. We finally discuss legal issues and data population issues for the data warehouse

    Novel clone selection technique reveals heterogeneity among HEK293T cells engineered to produce therapeutic extracellular vesicles

    Get PDF
    HEK293T cells have been engineered to produce extracellular vesicles (EVs) that deliver miR-199a-3p to CD44+ hepatocellular carcinoma cells. Restoration of this miRNA has been shown to slow cancer progression in-vitro. Isolation and analysis of EVs from cell culture media containing selection agent revealed that the number of miRNA-199a-3p copies was less than the number of cells in culture suggesting that not all cells produce therapeutic EVs. Therefore, therapeutic EV production can be significantly increased by selecting the HEK293T clones that produce the most therapeutic EVs. While clone selection is traditionally accomplished by cell analysis techniques such as fluorescence activated cell sorting (FACS), detection of therapeutic EVs poses a unique challenge in that cellular expression of miRNA-199a-3p does not necessarily correlate to the amount of exosomal miRNA-199a-3p. In response to this challenge, a fibrous microwell array was developed to screen thousands of clones for therapeutic EV productivity (figure 1). The fibrous microwell system is able to evaluate cell growth rate under fluid shear stress, EV productivity and EV characterization using fluorescently labeled antibodies or cationic lipoplex nanoparticles (detect presence of miRNA-199a-3p inside captured EVs produced by single clones). The most productive clones can be released from the microwells and grown in large scale cell culture to significantly increase therapeutic EV production. Please click Additional Files below to see the full abstract

    Refining the shallow slip deficit

    Get PDF
    Geodetic slip inversions for three major (M_w > 7) strike-slip earthquakes (1992 Landers, 1999 Hector Mine and 2010 El Mayor–Cucapah) show a 15–60 per cent reduction in slip near the surface (depth < 2 km) relative to the slip at deeper depths (4–6 km). This significant difference between surface coseismic slip and slip at depth has been termed the shallow slip deficit (SSD). The large magnitude of this deficit has been an enigma since it cannot be explained by shallow creep during the interseismic period or by triggered slip from nearby earthquakes. One potential explanation for the SSD is that the previous geodetic inversions lack data coverage close to surface rupture such that the shallow portions of the slip models are poorly resolved and generally underestimated. In this study, we improve the static coseismic slip inversion for these three earthquakes, especially at shallow depths, by: (1) including data capturing the near-fault deformation from optical imagery and SAR azimuth offsets; (2) refining the interferometric synthetic aperture radar processing with non-boxcar phase filtering, model-dependent range corrections, more complete phase unwrapping by SNAPHU (Statistical Non-linear Approach for Phase Unwrapping) assuming a maximum discontinuity and an on-fault correlation mask; (3) using more detailed, geologically constrained fault geometries and (4) incorporating additional campaign global positioning system (GPS) data. The refined slip models result in much smaller SSDs of 3–19 per cent. We suspect that the remaining minor SSD for these earthquakes likely reflects a combination of our elastic model's inability to fully account for near-surface deformation, which will render our estimates of shallow slip minima, and potentially small amounts of interseismic fault creep or triggered slip, which could ‘make up’ a small percentages of the coseismic SSD during the interseismic period. Our results indicate that it is imperative that slip inversions include accurate measurements of near-fault surface deformation to reliably constrain spatial patterns of slip during major strike-slip earthquakes
    • …
    corecore