2,006 research outputs found
Multi-Satellite Attitude Prediction program/Orbiting Solar Observatory-8 (MSAP/OSO-8) operating guide
The sun's lower corona and chromosphere and their interaction in the X-ray and ultraviolet (UV) spectral regions were investigated to better understand the transport of energy from the photosphere to the corona. The interaction between the solar electromagnetic and particle radiation and the earth's environment was studied and the background component of cosmic X-rays was discussed
Software Engineering Laboratory (SEL). Data base organization and user's guide, revision 1
The structure of the Software Engineering Laboratory (SEL) data base is described. It defines each data base file in detail and provides information about how to access and use the data for programmers and other users. Several data base reporting programs are described also
Long slit spectroscopy of NH2 in comets Halley, Wilson, and Nishikawa-Takamizawa-Tago
Long-slit spectra of comets Halley, Wilson and Nishikawa-Takamizawa-Tago were obtained with the 3.9 meter Anglo-Australian Telescope. Spectra of comets Halley and Wilson were obtained with the IPCS at a spectral resolution of 0.5 A and a spatial resolution of 10(exp 3) km. Spectra of comets Wilson and Nishikawa-Takamizawa-Tago were obtained with a CCD at a spectral resolution of 1.5 A and a spatial resolution of approximately 3 x 10(exp 3) km. Surface brightness profiles for NH2 were extracted from the long-slit spectra of each comet. The observed surface brightness profiles extend along the slit to approximately 6 x 10(exp 4) km from the nucleus in both sunward and tailward directions. By comparing surface distribution calculated from an appropriate coma model with observed surface brightness distributions, the photodissociation timescale of the parent molecule of NH2 can be inferred. The observed NH2 surface brightness profiles in all three comets compares well with a surface brightness profile calculated using the vectorial model, an NH3 photodissociation timescale of 7 x 10(exp 3) seconds, and an NH2 photodissociation timescale of 34,000 seconds
The Effect of Transfer Printing on Pentacene Thin-Film Crystal Structure
The thermal deposition and transfer Printing method had been used to produce
pentacene thin-films on SiO2/Si and plastic substrates (PMMA and PVP),
respectively. X-ray diffraction patterns of pentacene thin films showed
reflections associated with highly ordered polycrystalline films and a
coexistence of two polymorph phases classified by their d-spacing, d(001): 14.4
and 15.4 A.The dependence of the c-axis correlation length and the phase
fraction on the film thickness and printing temperature were measured. A
transition from the 15.4 A phase towards 14.4 A phase was also observed with
increasing film thickness. An increase in the c-axis correlation length of
approximately 12% ~16% was observed for Pn films transfer printed onto a PMMA
coated PET substrate at 100~120 C as compared to as-grown Pn films on SiO2/Si
substrates. The transfer printing method is shown to be an attractive for the
fabrication of pentacene thin-film transistors on flexible substrates partly
because of the resulting improvement in the quality of the pentacene film.Comment: 5 pages, 5 figure
Spectroscopy and 3D imaging of the Crab nebula
Spectroscopy of the Crab nebula along different slit directions reveals the 3
dimensional structure of the optical nebula. On the basis of the linear radial
expansion result first discovered by Trimble (1968), we make a 3D model of the
optical emission. Results from a limited number of slit directions suggest that
optical lines originate from a complicated array of wisps that are located in a
rather thin shell, pierced by a jet. The jet is certainly not prominent in
optical emission lines, but the direction of the piercing is consistent with
the direction of the X-ray and radio jet. The shell's effective radius is ~ 79
seconds of arc, its thickness about a third of the radius and it is moving out
with an average velocity 1160 km/s.Comment: 21 pages, 14 figures, submitted to ApJ, 3D movie of the Crab nebula
available at http://www.fiz.uni-lj.si/~vidrih
Calculated phonon spectra of paramagnetic iron at the alpha-gamma phase transition
We compute lattice dynamical properties of iron at the bcc-fcc phase
transition using dynamical mean-field theory implemented with the frozen-phonon
method. Electronic correlations are found to have a strong effect on the
lattice stability of paramagnetic iron in the bcc phase. Our results for the
structural phase stability and lattice dynamical properties of iron are in good
agreement with experiment.Comment: 4 pages, 2 figure
Total Chiral Symmetry Breaking during Crystallization: Who needs a "Mother Crystal"?
Processes that can produce states of broken chiral symmetry are of particular
interest to physics, chemistry and biology. Chiral symmetry breaking during
crystallization of sodium chlorate occurs via the production of secondary
crystals of the same handedness from a single "mother crystal" that seeds the
solution. Here we report that a large and "symmetric" population of D- and
L-crystals moves into complete chiral purity disappearing one of the
enantiomers. This result shows: (i) a new symmetry breaking process
incompatible with the hypothesis of a single "mother crystal"; (ii) that
complete symmetry breaking and chiral purity can be achieved from an initial
system with both enantiomers. These findings demand a new explanation to the
process of total symmetry breaking in crystallization without the intervention
of a "mother crystal" and open the debate on this fascinating phenomenon. We
present arguments to show that our experimental data can been explained with a
new model of "complete chiral purity induced by nonlinear autocatalysis and
recycling".Comment: 5 pages, 4 figures, Added reference
Diluted Random Fields in Mixed Cyanide Crystals
A percolation argument and a dilute compressible random field Ising model are
used to present a simple model for mixed cyanide crystals. The model reproduces
quantitatively several features of the phase diagrams altough some crude
approximations are made. In particular critical thresholds x_c at which
ferroelastic first order transitions disappear, are calculated. Moreover,
transitions are found to remain first order down to x_c for all mixtures except
for bromine, for which the transition becomes continuous. All the results are
in full agreement with experimental data.Comment: 8 pages, late
Temperature dependence of the electronic structure of semiconductors and insulators
The renormalization of electronic eigenenergies due to electron-phonon
coupling is sizable in many materials with light atoms. This effect, often
neglected in ab-initio calculations, can be computed using the
perturbation-based Allen-Heine-Cardona theory in the adiabatic or non-adiabatic
harmonic approximation. After a short description of the numerous recent
progresses in this field, and a brief overview of the theory, we focus on the
issue of phonon wavevector sampling convergence, until now poorly understood.
Indeed, the renormalization is obtained numerically through a q-point sampling
inside the BZ. For q-points close to G, we show that a divergence due to
non-zero Born effective charge appears in the electron-phonon matrix elements,
leading to a divergence of the integral over the BZ for band extrema. Although
it should vanish for non-polar materials, unphysical residual Born effective
charges are usually present in ab-initio calculations. Here, we propose a
solution that improves the coupled q-point convergence dramatically. For polar
materials, the problem is more severe: the divergence of the integral does not
disappear in the adiabatic harmonic approximation, but only in the
non-adiabatic harmonic approximation. In all cases, we study in detail the
convergence behavior of the renormalization as the q-point sampling goes to
infinity and the imaginary broadening parameter goes to zero. This allows
extrapolation, thus enabling a systematic way to converge the renormalization
for both polar and non-polar materials. Finally, the adiabatic and
non-adiabatic theory, with corrections for the divergence problem, are applied
to the study of five semiconductors and insulators: a-AlN, b-AlN, BN, diamond
and silicon. For these five materials, we present the zero-point
renormalization, temperature dependence, phonon-induced lifetime broadening and
the renormalized electronic bandstructure.Comment: 27 pages and 26 figure
Ab initio studies of phonon softening and high pressure phase transitions of alpha-quartz SiO2
Density functional perturbation theory calculations of alpha-quartz using
extended norm conserving pseudopotentials have been used to study the elastic
properties and phonon dispersion relations along various high symmetry
directions as a function of bulk, uniaxial and non-hydrostatic pressure. The
computed equation of state, elastic constants and phonon frequencies are found
to be in good agreement with available experimental data. A zone boundary (1/3,
1/3, 0) K-point phonon mode becomes soft for pressures above P=32 GPa. Around
the same pressure, studies of the Born stability criteria reveal that the
structure is mechanically unstable. The phonon and elastic softening are
related to the high pressure phase transitions and amorphization of quartz and
these studies suggest that the mean transition pressure is lowered under
non-hydrostatic conditions. Application of uniaxial pressure, results in a
post-quartz crystalline monoclinic C2 structural transition in the vicinity of
the K-point instability. This structure, intermediate between quartz and
stishovite has two-thirds of the silicon atoms in octahedral coordination while
the remaining silicon atoms remain tetrahedrally coordinated. This novel
monoclinic C2 polymorph of silica, which is found to be metastable under
ambient conditions, is possibly one of the several competing dense forms of
silica containing octahedrally coordinated silicon. The possible role of high
pressure ferroelastic phases in causing pressure induced amorphization in
silica are discussed.Comment: 17 pages, 8 figs., 8 Table
- …
