2,207 research outputs found

    A high-energy view of radio-loud AGN

    Full text link
    Seyfert galaxies and quasars were first discovered through optical and radio techniques, but in recent years high-energy emission, that can penetrate central gas and dust, has become essentially the defining characteristic of an AGN. AGNs with extended radio jets are of particular interest, since the jets signal source orientation. However, the jets extend into the cores, where they are faster and more compact. Special-relativistic effects then cause jet brightness and variability time-scales across the electromagnetic spectrum to be strong functions of jet orientation. Jet X-ray emission is confused, to varying degrees, with that from the central engine, but can be measured, at least in a statistical sense, through considerations of the multiwaveband spectrum and the level of intrinsic absorption. The rich high-energy structures found in jets which are resolved with Chandra inform our interpretation of the inner structures. In particular, it is found that shocks are prevalent and don't necessarily disrupt jets, and that one-zone models of emission near shocks are an over-simplification.Comment: Review to be published in Proceedings of the workshop "Multiband Approach to AGN", held on Sep.30-Oct.2 in Bonn. Publication: Memorie della Societa Astronomica Italiana, v. 26, No.1 (2005). 8 page

    Sliding not sloshing in Abell 3744: the influence of radio galaxies NGC 7018 and 7016 on cluster gas

    Get PDF
    We present new X-ray (Chandra) and radio (JVLA) observations of the nearby cluster Abell 3744. It hosts two prominent radio galaxies with powers in the range critical for radio-mode feedback. The radio emission from these galaxies terminates in buoyant tendrils reaching the cluster's outer edge, and the radio-emitting plasma clearly influences the cluster's X-ray-emitting atmosphere. The cluster's average gas temperature, of kT=3.5 keV, is high for its bolometric luminosity of 3.2 \times 10^{43} ergs s^{-1}, but the 100 kpc-scale cavity carved out by radio-emitting plasma shows evidence of less than 2 per cent of the excess enthalpy. We suggest instead that a high-velocity encounter with a galaxy group is responsible for dispersing and increasing the entropy of the gas in this non-cool-core cluster. We see no evidence for shocks, or established isobaric gas motions (sloshing), but there is much sub-structure associated with a dynamically active central region that encompasses the brightest radio emission. Gas heating is evident in directions perpendicular to the inferred line of encounter between the infalling group and cluster. The radio-emitting tendrils run along boundaries between gas of different temperature, apparently lubricating the gas flows and inhibiting heat transfer. The first stages of the encounter may have helped trigger the radio galaxies into their current phase of activity, where we see X-rays from the nuclei, jets, and hotspots.Comment: Accepted for publication in ApJ (13 pages, 17 figures

    The broad-band X-ray spectrum of a QSO sample

    Get PDF
    A sample of 25 QSOs was used to investigate the average spectrum between the soft X-ray energy band of the Einstein Observatory image proportional counter, and the higher energy band of the HEAO 1 A2 experiment. The spectrum is similar to thoe exhibited by Seyfert galaxies and narrow emission line galaxies above 2 keV. The spectrum is soft enough that if these objects are typical of the higher redshift, more radio-quiet QSOs, then it is possible to exclude QSOs as being the dominant origin of the diffuse X-ray background

    X-ray synchrotron emission from the oblique shock in the jet of the powerful radio galaxy 3C 346

    Full text link
    We report the first detection, with Chandra, of X-ray emission from the jet of the powerful narrow-line radio galaxy 3C 346. X-rays are detected from the bright radio and optical knot at which the jet apparently bends by about 70 degrees. The Chandra observation also reveals a bright galaxy-scale atmosphere within the previously-known cluster, and provides a good X-ray spectrum for the bright core of 3C 346. The X-ray emission from the knot is synchrotron radiation, as seen in lower-power sources. In common with these sources, there is evidence of morphological differences between the radio/optical and X-ray structures, and the spectrum is inconsistent with a one-component continuous-injection model. We suggest that the X-ray-bright knot is associated with a strong oblique shock in a moderately relativistic, light jet, at about 20 degrees to the line of sight, and that this shock is caused by the jet interacting with the wake in the cluster medium behind 3C 346's companion galaxy. The general jet curvature can result from pressure gradients in the cluster atmosphere.Comment: Accepted for publication in the MNRAS. 9 page

    The Infrared Jet In 3C66B

    Get PDF
    We present images of infrared emission from the radio jet in 3C66B. Data at three wavelengths (4.5, 6.75 and 14.5 microns) were obtained using the Infrared Space Observatory. The 6.75 micron image clearly shows an extension aligned with the radio structure. The jet was also detected in the 14.5 micron image, but not at 4.5 micron. The radio-infrared-optical spectrum of the jet can be interpreted as synchrotron emission from a population of electrons with a high-energy break of 4e11 eV. We place upper limits on the IR flux from the radio counter-jet. A symmetrical, relativistically beamed twin-jet structure is consistent with our results if the jets consist of multiple components.Comment: 7 pages, 4 figure

    Redshift and velocity dispersion of the cluster of galaxies around NGC 326

    Get PDF
    Redshifts of several galaxies thought to be associated with NGC 326 are determined. The results confirm the presence of a cluster and find a mean redshift of z = 0.0477 +/- 0.0007 and a line-of-sight velocity dispersion sigma_{z} = 599 (+230, -110) km/s. The velocity dispersion and previously measured X-ray gas temperature of kT ~ 1.9 keV are consistent with the cluster sigma_{z}/kT relation, and NGC 326 is seen to be a slowly-moving member of the cluster.Comment: 3 pages, to appear in MNRA

    A limit to the X-ray luminosity of nearby normal galaxies

    Get PDF
    Emission is studied at luminosities lower than those for which individual discrete sources can be studied. It is shown that normal galaxies do not appear to provide the numerous low luminosity X-ray sources which could make up the 2-60 keV diffuse background. Indeed, upper limits suggest luminosities comparable with, or a little less than, that of the galaxy. This is consistent with the fact that the average optical luminosity of the sample galaxies within approximately 20 Mpc is slightly lower than that of the galaxy. An upper limit of approximately 1% of the diffuse background from such sources is derived

    Unmasking the Active Galactic Nucleus in PKS J2310-437

    Full text link
    PKS J2310-437 is an AGN with bright X-ray emission relative to its weak radio emission and optical continuum. It is believed that its jet lies far enough from the line of sight that it is not highly relativistically beamed. It thus provides an extreme test of AGN models. We present new observations aimed at refining the measurement of the source's properties. In optical photometry with the NTT we measure a central excess with relatively steep spectrum lying above the bright elliptical galaxy emission, and we associate the excess wholly or in part with the AGN. A new full-track radio observation with the ATCA finds that the core 8.64GHz emission has varied by about 20 per cent over 38 months, and improves the mapping of the weak jet. With Chandra we measure a well-constrained power-law spectral index for the X-ray core, uncontaminated by extended emission from the cluster environment, with a negligible level of intrinsic absorption. Weak X-ray emission from the resolved radio jet is also measured. Our analysis suggests that the optical continuum in this radio galaxy has varied by at least a factor of four over a timescale of about two years, something that should be testable with further observations. We conclude that the most likely explanation for the bright central X-ray emission is synchrotron radiation from high-energy electrons.Comment: 7 pages, 12 figure
    • …
    corecore