3,124 research outputs found
Nonlinear Information Bottleneck
Information bottleneck (IB) is a technique for extracting information in one
random variable that is relevant for predicting another random variable
. IB works by encoding in a compressed "bottleneck" random variable
from which can be accurately decoded. However, finding the optimal
bottleneck variable involves a difficult optimization problem, which until
recently has been considered for only two limited cases: discrete and
with small state spaces, and continuous and with a Gaussian joint
distribution (in which case optimal encoding and decoding maps are linear). We
propose a method for performing IB on arbitrarily-distributed discrete and/or
continuous and , while allowing for nonlinear encoding and decoding
maps. Our approach relies on a novel non-parametric upper bound for mutual
information. We describe how to implement our method using neural networks. We
then show that it achieves better performance than the recently-proposed
"variational IB" method on several real-world datasets
Collective Intelligence for Control of Distributed Dynamical Systems
We consider the El Farol bar problem, also known as the minority game (W. B.
Arthur, ``The American Economic Review'', 84(2): 406--411 (1994), D. Challet
and Y.C. Zhang, ``Physica A'', 256:514 (1998)). We view it as an instance of
the general problem of how to configure the nodal elements of a distributed
dynamical system so that they do not ``work at cross purposes'', in that their
collective dynamics avoids frustration and thereby achieves a provided global
goal. We summarize a mathematical theory for such configuration applicable when
(as in the bar problem) the global goal can be expressed as minimizing a global
energy function and the nodes can be expressed as minimizers of local free
energy functions. We show that a system designed with that theory performs
nearly optimally for the bar problem.Comment: 8 page
A low-energy solar cosmic ray experiment for OGO-F
Instrumentation data for low energy solar cosmic ray measurements using OGO-F satellit
Analytic Continuation for Asymptotically AdS 3D Gravity
We have previously proposed that asymptotically AdS 3D wormholes and black
holes can be analytically continued to the Euclidean signature. The analytic
continuation procedure was described for non-rotating spacetimes, for which a
plane t=0 of time symmetry exists. The resulting Euclidean manifolds turned out
to be handlebodies whose boundary is the Schottky double of the geometry of the
t=0 plane. In the present paper we generalize this analytic continuation map to
the case of rotating wormholes. The Euclidean manifolds we obtain are quotients
of the hyperbolic space by a certain quasi-Fuchsian group. The group is the
Fenchel-Nielsen deformation of the group of the non-rotating spacetime. The
angular velocity of an asymptotic region is shown to be related to the
Fenchel-Nielsen twist. This solves the problem of classification of rotating
black holes and wormholes in 2+1 dimensions: the spacetimes are parametrized by
the moduli of the boundary of the corresponding Euclidean spaces. We also
comment on the thermodynamics of the wormhole spacetimes.Comment: 28 pages, 14 figure
Algebraic-geometrical formulation of two-dimensional quantum gravity
We find a volume form on moduli space of double punctured Riemann surfaces
whose integral satisfies the Painlev\'e I recursion relations of the genus
expansion of the specific heat of 2D gravity. This allows us to express the
asymptotic expansion of the specific heat as an integral on an infinite
dimensional moduli space in the spirit of Friedan-Shenker approach. We outline
a conjectural derivation of such recursion relations using the
Duistermaat-Heckman theorem.Comment: 10 pages, Latex fil
Pattern Formation by Boundary Forcing in Convectively Unstable, Oscillatory Media With and Without Differential Transport
Motivated by recent experiments and models of biological segmentation, we
analyze the exicitation of pattern-forming instabilities of convectively
unstable reaction-diffusion-advection (RDA) systems, occuring by means of
constant or periodic forcing at the upstream boundary. Such boundary-controlled
pattern selection is a generalization of the flow-distributed oscillation (FDO)
mechanism that can include Turing or differential flow instability (DIFI)
modes. Our goal is to clarify the relationships among these mechanisms in the
general case where there is differential flow as well as differential
diffusion. We do so by analyzing the dispersion relation for linear
perturbations and showing how its solutions are affected by differential
transport. We find a close relationship between DIFI and FDO, while the Turing
mechanism gives rise to a distinct set of unstable modes. Finally, we
illustrate the relevance of the dispersion relations using nonlinear
simulations and we discuss the experimental implications of our results.Comment: Revised version with added content (new section and figures added),
changes to wording and organizatio
Robust formation of morphogen gradients
We discuss the formation of graded morphogen profiles in a cell layer by
nonlinear transport phenomena, important for patterning developing organisms.
We focus on a process termed transcytosis, where morphogen transport results
from binding of ligands to receptors on the cell surface, incorporation into
the cell and subsequent externalization. Starting from a microscopic model, we
derive effective transport equations. We show that, in contrast to morphogen
transport by extracellular diffusion, transcytosis leads to robust ligand
profiles which are insensitive to the rate of ligand production
- …
