254 research outputs found

    Resonant photon absorption and hole burning in Cr7Ni antiferromagnetic rings

    Full text link
    Presented are magnetization measurements on a crystal of Cr7Ni antiferromagnetic rings. Irradiation with microwaves at frequencies between 1 and 10 GHz leads to observation of very narrow resonant photon absorption lines which are mainly broadened by hyperfin interactions. A two-pulse hole burning technique allowed us to estimate the characteristic energy diffusion time.Comment: 4 pages, 5 figure

    Bounding and approximating parabolas for the spectrum of Heisenberg spin systems

    Full text link
    We prove that for a wide class of quantum spin systems with isotropic Heisenberg coupling the energy eigenvalues which belong to a total spin quantum number S have upper and lower bounds depending at most quadratically on S. The only assumption adopted is that the mean coupling strength of any spin w.r.t. its neighbours is constant for all N spins. The coefficients of the bounding parabolas are given in terms of special eigenvalues of the N times N coupling matrix which are usually easily evaluated. In addition we show that the bounding parabolas, if properly shifted, provide very good approximations of the true boundaries of the spectrum. We present numerical examples of frustrated rings, a cube, and an icosahedron.Comment: 8 pages, 3 figures. Submitted to Europhysics Letter

    Molecular engineering of antiferromagnetic rings for quantum computation

    Get PDF
    The substitution of one metal ion in a Cr-based molecular ring with dominant antiferromagnetic couplings allows to engineer its level structure and ground-state degeneracy. Here we characterize a Cr7Ni molecular ring by means of low-temperature specific-heat and torque-magnetometry measurements, thus determining the microscopic parameters of the corresponding spin Hamiltonian. The energy spectrum and the suppression of the leakage-inducing S-mixing render the Cr7Ni molecule a suitable candidate for the qubit implementation, as further substantiated by our quantum-gate simulations.Comment: To appear in Physical Review Letter

    Quantum information analysis of electronic states at different molecular structures

    Full text link
    We have studied transition metal clusters from a quantum information theory perspective using the density-matrix renormalization group (DMRG) method. We demonstrate the competition between entanglement and interaction localization. We also discuss the application of the configuration interaction based dynamically extended active space procedure which significantly reduces the effective system size and accelerates the speed of convergence for complicated molecular electronic structures to a great extent. Our results indicate the importance of taking entanglement among molecular orbitals into account in order to devise an optimal orbital ordering and carry out efficient calculations on transition metal clusters. We propose a recipe to perform DMRG calculations in a black-box fashion and we point out the connections of our work to other tensor network state approaches

    Modelling Conformational Flexibility in a Spectrally Addressable Molecular Multi-Qubit Model System

    Get PDF
    Dipolar coupled multi-spin systems have the potential to be used as molecular qubits. Herein we report the synthesis of a molecular multi-qubit model system with three individually addressable, weakly interacting, spin (Formula presented.) centres of differing g-values. We use pulsed Electron Paramagnetic Resonance (EPR) techniques to characterise and separately address the individual electron spin qubits; CuII, Cr7Ni ring and a nitroxide, to determine the strength of the inter-qubit dipolar interaction. Orientation selective Relaxation-Induced Dipolar Modulation Enhancement (os-RIDME) detecting across the CuII spectrum revealed a strongly correlated CuII-Cr7Ni ring relationship; detecting on the nitroxide resonance measured both the nitroxide and CuII or nitroxide and Cr7Ni ring correlations, with switchability of the interaction based on differing relaxation dynamics, indicating a handle for implementing EPR-based quantum information processing (QIP) algorithms

    Harnessing the extracellular bacterial production of nanoscale cobalt ferrite with exploitable magnetic properties

    Get PDF
    Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe2O4) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of ∼106 erg cm−3 can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies

    Early adulthood socioeconomic trajectories contribute to inequalities in adult cardiovascular health, independently of childhood and adulthood socioeconomic position

    Get PDF
    Background: Cardiovascular health shows significant socioeconomic inequalities, however there is little understanding of the role of early adulthood in generation of these inequalities. We assessed the contribution of socioeconomic trajectories during early adulthood (16–24 years) to cardiovascular health in mid-adulthood (46 years). Methods: Participants from the 1970 British Cohort Study with socioeconomic data available in early adulthood were included (n=12 423). Longitudinal latent class analysis identified socioeconomic trajectories, based on patterns of economic activity throughout early adulthood. Cardiometabolic risk factors (46 years) were regressed on socioeconomic trajectory class (16–24 years), testing mediation by adult socioeconomic position (46 years). Models were stratified by sex and adjusted for childhood socioeconomic position (SEP) and adolescent health. Results: Six early adulthood socioeconomic trajectories were identified: (1) Continued Education (20.2%), (2) Managerial Employment (16.0%), (3) Skilled Non-manual Employment (20.9%), (4) Skilled Manual Employment (18.9%), (5) Partly Skilled Employment (15.8%) and (6) Economically Inactive (8.1%). The ‘Continued Education’ trajectory class showed the best cardiovascular health at age 46 years, with the lowest levels of cardiometabolic risk factors. For example, systolic blood pressure was 128.9 mm Hg (95% CI 127.8 to 130.0) among men in the ‘Continued Education’ class, compared with 131.3 mm Hg (95% CI 130.4 to 132.2) among men in the ‘Skilled Manual’ class. Patterns across classes 2–6 differed by risk factor and sex. The observed associations were largely not mediated by SEP at age 46 years. Conclusion: Findings suggest an independent contribution of early adulthood socioeconomic trajectories to development of later life cardiovascular inequalities. Further work is needed to understand mediators of this relationship and potential for interventions to mitigate these pathways

    Recipes for spin-based quantum computing

    Full text link
    Technological growth in the electronics industry has historically been measured by the number of transistors that can be crammed onto a single microchip. Unfortunately, all good things must come to an end; spectacular growth in the number of transistors on a chip requires spectacular reduction of the transistor size. For electrons in semiconductors, the laws of quantum mechanics take over at the nanometre scale, and the conventional wisdom for progress (transistor cramming) must be abandoned. This realization has stimulated extensive research on ways to exploit the spin (in addition to the orbital) degree of freedom of the electron, giving birth to the field of spintronics. Perhaps the most ambitious goal of spintronics is to realize complete control over the quantum mechanical nature of the relevant spins. This prospect has motivated a race to design and build a spintronic device capable of complete control over its quantum mechanical state, and ultimately, performing computations: a quantum computer. In this tutorial we summarize past and very recent developments which point the way to spin-based quantum computing in the solid-state. After introducing a set of basic requirements for any quantum computer proposal, we offer a brief summary of some of the many theoretical proposals for solid-state quantum computers. We then focus on the Loss-DiVincenzo proposal for quantum computing with the spins of electrons confined to quantum dots. There are many obstacles to building such a quantum device. We address these, and survey recent theoretical, and then experimental progress in the field. To conclude the tutorial, we list some as-yet unrealized experiments, which would be crucial for the development of a quantum-dot quantum computer.Comment: 45 pages, 12 figures (low-res in preprint, high-res in journal) tutorial review for Nanotechnology; v2: references added and updated, final version to appear in journa

    Spin dynamics of molecular nanomagnets fully unraveled by four-dimensional inelastic neutron scattering

    Full text link
    Molecular nanomagnets are among the first examples of spin systems of finite size and have been test-beds for addressing a range of elusive but important phenomena in quantum dynamics. In fact, for short-enough timescales the spin wavefunctions evolve coherently according to the an appropriate cluster spin-Hamiltonian, whose structure can be tailored at the synthetic level to meet specific requirements. Unfortunately, to this point it has been impossible to determine the spin dynamics directly. If the molecule is sufficiently simple, the spin motion can be indirectly assessed by an approximate model Hamiltonian fitted to experimental measurements of various types. Here we show that recently-developed instrumentation yields the four-dimensional inelastic-neutron scattering function S(Q,E) in vast portions of reciprocal space and enables the spin dynamics to be determined with no need of any model Hamiltonian. We exploit the Cr8 antiferromagnetic ring as a benchmark to demonstrate the potential of this new approach. For the first time we extract a model-free picture of the quantum dynamics of a molecular nanomagnet. This allows us, for example, to examine how a quantum fluctuation propagates along the ring and to directly test the degree of validity of the N\'{e}el-vector-tunneling description of the spin dynamics
    • …
    corecore