1,675 research outputs found

    The intrinsic electrical equivalent circuit of a laser diode

    Get PDF
    The basic electrical equivalent circuit of a laser diode is derived. The effects of spontaneous emission and self-pulsations are included. It is found that self-pulsations are represented by a negative resistance in the model. Application of this model suggests purely electronic methods of suppressing relaxation oscillations in laser diodes

    Single-growth embedded epitaxy AlGaAs injection lasers with extremely low threshold currents

    Get PDF
    A new type of strip-geometry AlGaAs double-heterostructure laser with an embedded optical waveguide has been developed. The new structure is fabricated using a single step of epitaxial growth. Lasers with threshold currents as low as 9.5 mA (150 µm long) were obtained. These lasers exhibit operation in a single spatial and longitudinal mode, have differential quantum efficiencies exceeding 45%, and a characteristic temperature of 175° C. They emit more than 12 mW/facet of optical power without any kinks

    Gallium Arsenide Monolithic Optoelectronic Circuits

    Get PDF
    The optical properties of GaAs make it a very useful material for the fabrication of optical emitters and detectors. GaAs also possesses electronic properties which allow the fabrication of high speed electronic devices which are superior to conventional silicon devices. Monolithic optoelectronic circuits are formed by the integration of optical and electronic devices on a single GaAs substrate. Integration of many devices is most easily accomplished on a semi-insulating (SI) sub-strate. Several laser structures have been fabricated on SI GaAs substrates. Some of these lasers have been integrated with Gunn diodes and with metal semiconductor field effect transistors (MESFETs). An integrated optical repeater has been demonstrated in which MESFETs are used for optical detection and electronic amplification, and a laser is used to regenerate the optical signal. Monolithic optoelectronic circuits have also been constructed on conducting substrates. A heterojunction bipolar transistor driver has been integrated with a laser on an n-type GaAs substrate

    Whispering gallery lasers on semi-insulating GaAs substrates

    Get PDF
    Double heterostructure lasers are described in which light is guided by total internal reflection along a dielectric interface formed by the perimeter of an etched mesa. By means of the crowding effect, injection current is restricted to a narrow strip adjacent to the edge of the mesa. This results in the preferential excitation of optical modes which are localized in the vicinity of the dielectric interface. Both half-ring lasers formed at a single cleaved facet and quarter-ring lasers formed at a cleaved corner were fabricated

    The GaAs solar cells with V-grooved emitters

    Get PDF
    Geometrically structured surfaces have become increasingly important to solar cell efficiency improvements and radiation tolerance. Gallium arsenide solar cells with a V-grooved front surface which demonstrate improved optical coupling and higher short-circuit current compared to planar cells were fabricated. GaAs homojunction cells were fabricated by organometallic chemical vapor deposition (OMCVD) on an n+ substrate. The V-grooves were formed on the surface with an anisotropic etch, and an n-type buffer and p-type emitter were grown by OMCVD, followed by ohmic contacts. Reflectivity measurements show significantly lower reflectance for the microgrooved cell compared to the planar structure. The short circuit current of the V-grooved solar cell is consistently higher than that of the planar controls

    A monolithically integrated optical repeater

    Get PDF
    A monolithically integrated optical repeater has been fabricated on a single-crystal semi-insulating GaAs substrate. The repeater consists of an optical detector, an electronic amplifier, and a double heterostructure crowding effect laser. The repeater makes use of three metal semiconductor field effect transistors, one of which is used as the optical detector. With light from an external GaAlAs laser incident on the detector, an overall optical power gain of 10 dB from both laser facets was obtained

    Peeled film GaAs solar cells for space power

    Get PDF
    Gallium arsenide (GaAs) peeled film solar cells were fabricated, by Organo-Metallic Vapor Phase Epitaxy (OMVPE), incorporating an aluminum arsenide (AlAs) parting layer between the device structure and the GaAs substrate. This layer was selectively removed by etching in dilute hydrofloric (HF) acid to release the epitaxial film. Test devices exhibit high series resistance due to insufficient back contact area. A new design is presented which uses a coverglass superstrate for structural support and incorporates a coplanar back contact design. Devices based on this design should have a specific power approaching 700 W/Kg

    Be-implanted (GaAl)As stripe geometry lasers

    Get PDF
    GaAl)As double-heterostructure stripe geometry lasers have been fabricated using Be ion implantation. Pulsed threshold currents as low as 21 mA have been found. The light-vs-current characteristics were kink-free up to 10 mW output power and the measured differential quantum efficiency was 45%

    A V-grooved GaAs solar cell

    Get PDF
    V-grooved GaAs solar cells promise the benefits of improved optical coupling, higher short-circuit current, and increased tolerance to particle radiation compared to planar cells. A GaAs homojunction cell was fabricated by etching a V-groove pattern into an n epilayer (2.1 x 10 to the 17th power per cu cm) grown by metalorganic chemical vapor deposition (MOCVD) on an n+ substrate (2.8 x 10 to the 18th power per cu cm) and then depositing and MOCVD p epilayer (4.2 x 10 to the 18th power per cu cm). Reflectivity measurements on cells with and without an antireflective coating confirm the expected decrease in reluctance of the microgrooved cell compared to the planar structure. The short circuit current of the V-grooved solar cell was 13 percent higher than that of the planar control
    corecore