887 research outputs found
Continuous-flow IRMS technique for determining the 17O excess of CO2 using complete oxygen isotope exchange with cerium oxide
This paper presents an analytical system for analysis of all single
substituted isotopologues (<sup>12</sup>C<sup>16</sup>O<sup>17</sup>O,
<sup>12</sup>C<sup>16</sup>O<sup>18</sup>O, <sup>13</sup>C<sup>16</sup>O<sup>16</sup>O) in nanomolar quantities
of CO<sub>2</sub> extracted from stratospheric air samples. CO<sub>2</sub> is
separated from bulk air by gas chromatography and CO<sub>2</sub> isotope ratio
measurements (ion masses 45 / 44 and 46 / 44) are performed using isotope ratio
mass spectrometry (IRMS). The <sup>17</sup>O excess (Δ<sup>17</sup>O) is
derived from isotope measurements on two different CO<sub>2</sub> aliquots:
unmodified CO<sub>2</sub> and CO<sub>2</sub> after complete oxygen isotope exchange with
cerium oxide (CeO<sub>2</sub>) at 700 °C. Thus, a single measurement of
Δ<sup>17</sup>O requires two injections of 1 mL of air with a CO<sub>2</sub>
mole fraction of 390 μmol mol<sup>−1</sup> at 293 K and 1 bar pressure
(corresponding to 16 nmol CO<sub>2</sub> each). The required sample size
(including flushing) is 2.7 mL of air. A single analysis (one pair of
injections) takes 15 minutes. The analytical system is fully automated for
unattended measurements over several days. The standard deviation of the
<sup>17</sup>O excess analysis is 1.7‰. Multiple
measurements on an air sample reduce the measurement uncertainty, as
expected for the statistical standard error. Thus, the uncertainty for a
group of 10 measurements is 0.58‰ for Δ
<sup>17</sup>O in 2.5 h of analysis. 100 repeat analyses of one air sample
decrease the standard error to 0.20‰. The instrument
performance was demonstrated by measuring CO<sub>2</sub> on stratospheric air
samples obtained during the EU project RECONCILE with the high-altitude
aircraft Geophysica. The precision for RECONCILE data is 0.03‰ (1σ) for δ<sup>13</sup>C, 0.07‰ (1σ) for δ<sup>18</sup>O and 0.55‰ (1σ) for δ<sup>17</sup>O for a sample of 10
measurements. This is sufficient to examine stratospheric enrichments, which
at altitude 33 km go up to 12‰ for δ<sup>17</sup>O
and up to 8‰ for δ<sup>18</sup>O with respect to
tropospheric CO<sub>2</sub> : δ<sup>17</sup>O ~
21‰ Vienna Standard Mean Ocean Water (VSMOW), δ<sup>18</sup>O ~
41‰ VSMOW (Lämmerzahl et al., 2002). The samples
measured with our analytical technique agree with available data for
stratospheric CO<sub>2</sub>
Thermodynamic properties of confined interacting Bose gases - a renormalization group approach
A renormalization group method is developed with which thermodynamic
properties of a weakly interacting, confined Bose gas can be investigated.
Thereby effects originating from a confining potential are taken into account
by periodic boundary conditions and by treating the resulting discrete energy
levels of the confined degrees of freedom properly. The resulting density of
states modifies the flow equations of the renormalization group in momentum
space. It is shown that as soon as the characteristic length of confinement
becomes comparable to the thermal wave length of a weakly interacting and
trapped Bose gas its thermodynamic properties are changed significantly. This
is exemplified by investigating characteristic bunching properties of the
interacting Bose gas which manifest themselves in the second order coherence
factor
Entropy, time irreversibility and Schroedinger equation in a primarily discrete space-time
In this paper we show that the existence of a primarily discrete space-time
may be a fruitful assumption from which we may develop a new approach of
statistical thermodynamics in pre-relativistic conditions. The discreetness of
space-time structure is determined by a condition that mimics the Heisenberg
uncertainty relations and the motion in this space-time model is chosen as
simple as possible. From these two assumptions we define a path-entropy that
measures the number of closed paths associated with a given energy of the
system preparation. This entropy has a dynamical character and depends on the
time interval on which we count the paths. We show that it exists an
like-equilibrium condition for which the path-entropy corresponds exactly to
the usual thermodynamic entropy and, more generally, the usual statistical
thermodynamics is reobtained. This result derived without using the Gibbs
ensemble method shows that the standard thermodynamics is consistent with a
motion that is time-irreversible at a microscopic level. From this change of
paradigm it becomes easy to derive a . A comparison with the
traditional Boltzmann approach is presented. We also show how our approach can
be implemented in order to describe reversible processes. By considering a
process defined simultaneously by initial and final conditions a well defined
stochastic process is introduced and we are able to derive a Schroedinger
equation, an example of time reversible equation.Comment: latex versio
Why is the DNA Denaturation Transition First Order?
We study a model for the denaturation transition of DNA in which the
molecules are considered as composed of a sequence of alternating bound
segments and denaturated loops. We take into account the excluded-volume
interactions between denaturated loops and the rest of the chain by exploiting
recent results on scaling properties of polymer networks of arbitrary topology.
The phase transition is found to be first order in d=2 dimensions and above, in
agreement with experiments and at variance with previous theoretical results,
in which only excluded-volume interactions within denaturated loops were taken
into account. Our results agree with recent numerical simulations.Comment: Revised version. To appear in Phys. Rev. Let
Path Integral Approach to the Non-Relativistic Electron Charge Transfer
A path integral approach has been generalized for the non-relativistic
electron charge transfer processes. The charge transfer - the capture of an
electron by an ion passing another atom or more generally the problem of
rearrangement collisions is formulated in terms of influence functionals. It
has been shown that the electron charge transfer process can be treated either
as electron transition problem or as elastic scattering of ion and atom in the
some effective potential field. The first-order Born approximation for the
electron charge transfer cross section has been reproduced to prove the
adequacy of the path integral approach for this problem.Comment: 19 pages, 1 figure, to appear in Journal of Physics B: Atomic,
Molecular & Optical, vol.34, 200
Polyelectrolyte multilayer formation: electrostatics and short-range interactions
We investigate the phenomenon of multilayer formation via layer-by-layer
deposition of alternating charge polyelectrolytes. Using mean-field theory, we
find that a strong short-range attraction between the two types of polymer
chains is essential for the formation of multilayers. The dependence of the
required short-range attraction on the polymer charge fraction and salt
concentration is calculated. For weak short-range attraction between any two
adjacent layers, the adsorbed amount (per added layer) decays as the distance
from the surface increases, until the chains stop adsorbing altogether. For
strong short-range attraction, the adsorbed amount per layer increases after an
initial decrease, and finally it stabilizes in the form of a polyelectrolyte
multilayer that can be repeated many times.Comment: 8 pages, 7 figure
Statistical Mechanics of Membrane Protein Conformation: A Homopolymer Model
The conformation and the phase diagram of a membrane protein are investigated
via grand canonical ensemble approach using a homopolymer model. We discuss the
nature and pathway of -helix integration into the membrane that results
depending upon membrane permeability and polymer adsorptivity. For a membrane
with the permeability larger than a critical value, the integration becomes the
second order transition that occurs at the same temperature as that of the
adsorption transition. For a nonadsorbing membrane, the integration is of the
first order due to the aggregation of -helices.Comment: RevTeX with 5 postscript figure
A core outcome set for localised prostate cancer effectiveness trials
Objective:
To develop a core outcome set (COS) applicable for effectiveness trials of all interventions for localised prostate cancer.
Background:
Many treatments exist for localised prostate cancer, although it is unclear which offers the optimal therapeutic ratio. This is confounded by inconsistencies in the selection, definition, measurement and reporting of outcomes in clinical trials.
Subjects and methods:
A list of 79 outcomes was derived from a systematic review of published localised prostate cancer effectiveness studies and semi-structured interviews with 15 prostate cancer patients. A two-stage consensus process involving 118 patients and 56 international healthcare professionals (HCPs) (cancer specialist nurses, urological surgeons and oncologists) was undertaken, consisting of a three-round Delphi survey followed by a face-to-face consensus panel meeting of 13 HCPs and 8 patients.
Results:
The final COS included 19 outcomes. Twelve apply to all interventions: death from prostate cancer, death from any cause, local disease recurrence, distant disease recurrence/metastases, disease progression, need for salvage therapy, overall quality of life, stress urinary incontinence, urinary function, bowel function, faecal incontinence, sexual function. Seven were intervention-specific: perioperative deaths (surgery), positive surgical margin (surgery), thromboembolic disease (surgery), bothersome or symptomatic urethral or anastomotic stricture (surgery), need for curative treatment (active surveillance), treatment failure (ablative therapy), and side effects of hormonal therapy (hormone therapy). The UK-centric participants may limit the generalisability to other countries, but trialists should reason why the COS would not be applicable. The default position should not be that a COS developed in one country will automatically not be applicable elsewhere.
Conclusion:
We have established a COS for trials of effectiveness in localised prostate cancer, applicable across all interventions which should be measured in all localised prostate cancer effectiveness trials
Some approximate analytical methods in the study of the self-avoiding loop model with variable bending rigidity and the critical behaviour of the strong coupling lattice Schwinger model with Wilson fermions
Some time ago Salmhofer demonstrated the equivalence of the strong coupling
lattice Schwinger model with Wilson fermions to a certain 8-vertex model which
can be understood as a self-avoiding loop model on the square lattice with
bending rigidity and monomer weight . The
present paper applies two approximate analytical methods to the investigation
of critical properties of the self-avoiding loop model with variable bending
rigidity, discusses their validity and makes comparison with known MC results.
One method is based on the independent loop approximation used in the
literature for studying phase transitions in polymers, liquid helium and cosmic
strings. The second method relies on the known exact solution of the
self-avoiding loop model with bending rigidity . The present
investigation confirms recent findings that the strong coupling lattice
Schwinger model becomes critical for . The phase
transition is of second order and lies in the Ising model universality class.
Finally, the central charge of the strong coupling Schwinger model at
criticality is discussed and predicted to be .Comment: 22 pages LaTeX, 6 Postscript figure
- …
