463 research outputs found

    Depth concentrations of deuterium ions implanted into some pure metals and alloys

    Full text link
    Pure metals (Cu, Ti, Zr, V, Pd) and diluted Pd-alloys (Pd-Ag, Pd-Pt, Pd-Ru, Pd-Rh) were implanted by 25 keV deuterium ions at fluences in the range (1.2{\div}2.3)x1022 D+/m2. The post-treatment depth distributions of deuterium ions were measured 10 days and three months after the implantation using Elastic Recoil Detection Analysis (ERDA) and Rutherford Backscattering (RBS). Comparison of the obtained results allowed to make conclusions about relative stability of deuterium and hydrogen gases in pure metals and diluted Pd alloys. Very high diffusion rates of implanted deuterium ions from V and Pd pure metals and Pd alloys were observed. Small-angle X-ray scattering revealed formation of nanosized defects in implanted corundum and titanium.Comment: 12 pages, 9 figure

    Strong magnetic pair breaking in Mn substituted MgB_2 single crystals

    Get PDF
    Magnetic ions (Mn) were substituted in MgB_2 single crystals resulting in a strong pair-breaking effect. The superconducting transition temperature, T_c, in Mg_{1-x}Mn_xB_2 has been found to be rapidly suppressed at an initial rate of 10 K/%Mn, leading to a complete suppression of superconductivity at about 2% Mn substitution. This reflects the strong coupling between the conduction electrons and the 3d local moments, predominantly of magnetic character, since the nonmagnetic ion substitutions, e.g. with Al or C, suppress T_c much less effectively (e.g. 0.5 K/%Al). The magnitude of the magnetic moment, derived from normal state susceptibility measurements, uniquely identifies the Mn ions to be divalent, and to be in the low-spin state (S = 1/2). This has been found also in X-ray absorption spectroscopy measurements. Isovalent Mn^{2+} substitution for Mg^{2+} mainly affects superconductivity through spin-flip scattering reducing T_c rapidly and lowering the upper critical field anisotropy H_{c2}^{ab}/H_{c2}^c at T = 0 from 6 to 3.3 (x = 0.88% Mn), while leaving the initial slope dH_{c2}/dT near T_c unchanged for both field orientations.Comment: 9 pages, 9 figure

    Superexchange Interaction in Insulating EuZn2_{2}P2_{2}

    Full text link
    We report magnetic and transport properties of single-crystalline EuZn2_{2}P2_{2}, which has trigonal CaAl2_2Si2_2-type crystal structure and orders antiferromagnetically at \approx23~K. Easy abab-plane magneto-crystalline anisotropy was confirmed from the magnetization isotherms, measured with a magnetic field applied along different crystallographic directions (abab-plane and cc-axis). Positive Curie-Weiss temperature indicates dominating ferromagnetic correlations. Electrical resistivity displays insulating behavior with a band-gap of \approx\,0.177~eV, which decreases to \approx\,0.13~eV upon application of a high magnetic field. We explained the intriguing presence of magnetic interactions in an intermetallic insulator by the mechanism of extended superexchange, with phosphorus as an anion mediator, which is further supported by our analysis of the charge and spin density distributions. We constructed the effective Heisenberg model, with exchange parameters derived from the \textit{ab initio} DFT calculations, and employed it in Monte-Carlo simulations, which correctly reproduced the experimental value of N\'eel temperature

    Adaptive Logics as a Necessary Tool for Relative Rationality: Including a Section on Logical Pluralism

    Get PDF
    In this paper, I show that adaptive logics are required by my epistemological stand. While doing so, I defy the reader to cope with the problems I am able to cope with. The last section of the paper contains a defense of a specific form of logical pluralism. Although this section is an integral part of the paper, it may be read separately

    Einstein black holes, free scalars and AdS/CFT correspondence

    Full text link
    We investigate AdS/CFT correspondence for two families of Einstein black holes in d > 3 dimensions, modelling the boundary CFT by a free conformal scalar field and evaluating the boundary two-point function in the bulk geodesic approximation. For the d > 3 counterpart of the nonrotating BTZ hole and for its Z_2 quotient, the boundary state is thermal in the expected sense, and its stress-energy reflects the properties of the bulk geometry and suggests a novel definition for the mass of the hole. For the generalised Schwarzschild-AdS hole with a flat horizon of topology R^{d-2}, the boundary stress-energy has a thermal form with energy density proportional to the hole ADM mass, but stress-energy corrections from compactified horizon dimensions cannot be consistently included at least for d=5.Comment: 32 pages. LaTeX with amsfonts, amsmath, amssymb. (v2: References added. v3: Geodesic horizon-crossing clarified in section 2; comparison with quasilocal energy-momentum included in section 4.

    Growth conditions, structure, and superconductivity of pure and metal-doped FeTe1-xSex single crystals

    Full text link
    Superconducting single crystals of pure FeTe1 xSex and FeTe0.65Se0.35 doped with Co, Ni, Cu, Mn, Zn, Mo, Cd, In, Pb, Hg, V, Ga, Mg, Al, Ti, Cr, Sr or Nd into Fe ions site have been grown applying Bridgman's method. It has been found that the sharpness of transition to the superconducting state in FeTe1 xSex is evidently inversely correlated with crystallographic quality of the crystals. Among all of the studied dopants only Co, Ni and Cu substitute Fe ions in FeTe0.65Se0.35 crystals. The remaining examined ions do not incorporate into the crystal structure. Nevertheless, they form inclusions together with selenium, tellurium and/or iron, what changes the chemical composition of host matrix and therefore influences Tc value. Small disorder introduced into magnetic sublattice, by partial replacement of Fe ions by slight amount of nonmagnetic ions of Cu (~ 1.5 at%) or by magnetic ions of Ni (~ 2 at%) and Co (~5 at%) with spin value different than that of Fe ion, completely suppresses superconductivity in FeTe1 xSex system. This indicates that even if superconductivity is observed in the system containing magnetic ions it can not survive when the disorder in magnetic ions sublattice is introduced, most likely because of magnetic scattering of Cooper pairs.Comment: 18 pages, 12 figures, 3 table
    corecore