250 research outputs found

    Recalculated diet and daily ration of the shortfin mako (Isurus oxyrinchus), with a focus on quantifying predation on bluefish (Pomatomus saltatrix) in the northwest Atlantic Ocean

    Get PDF
    The diet and daily ration of the shortfin mako (Isurus oxyrinchus) in the northwest Atlantic were re-examined to determine whether fluctuations in prey abundance and availability are reflected in these two biological variables. During the summers of 2001 and 2002, stomach content data were collected from fishing tournaments along the northeast coast of the United States. These data were quantified by using four diet indices and were compared to index calculations from historical diet data collected from 1972 through 1983. Bluefish (Pomatomus saltatrix) were the predominant prey in the 1972–83 and 2001–02 diets, accounting for 92.6% of the current diet by weight and 86.9% of the historical diet by volume. From the 2001– 02 diet data, daily ration was estimated and it indicated that shortfin makos must consume roughly 4.6% of their body weight per day to fulfill energetic demands. The daily energetic requirement was broken down by using a calculated energy content for the current diet of 4909 KJ/kg. Based on the proportional energy of bluefish in the diet by weight, an average shortfin mako consumes roughly 500 kg of bluefish per year off the northeast coast of the United States. The results are discussed in relation to the potential effect of intense shortfin mako predation on bluefish abundance in the region

    Supplemental Feeding for Ecotourism Reverses Diel Activity and Alters Movement Patterns and Spatial Distribution of the Southern Stingray, Dasyatis americana

    Get PDF
    Southern stingrays, Dasyatis americana, have been provided supplemental food in ecotourism operations at Stingray City Sandbar (SCS), Grand Cayman since 1986, with this site becoming one of the world’s most famous and heavily visited marine wildlife interaction venues. Given expansion of marine wildlife interactive tourism worldwide, there are questions about the effects of such activities on the focal species and their ecosystems. We used a combination of acoustic telemetry and tag-recapture efforts to test the hypothesis that human-sourced supplemental feeding has altered stingray activity patterns and habitat use at SCS relative to wild animals at control sites. Secondarily, we also qualitatively estimated the population size of stingrays supporting this major ecotourism venue. Tag-recapture data indicated that a population of at least 164 stingrays, over 80% female, utilized the small area at SCS for prolonged periods of time. Examination of comparative movements of mature female stingrays at SCS and control sites revealed strong differences between the two groups: The fed animals demonstrated a notable inversion of diel activity, being constantly active during the day with little movement at night compared to the nocturnally active wild stingrays; The fed stingrays utilized significantly (

    Optimal estimation of the vehicle state in an embedded dopploer/GPS navigation system

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1994.GRSN 698605Includes bibliographical references (p. 231-232).by Lisa D. Wetherbee.M.S

    Recalculated diet and daily ration of the shortfin mako (\u3cem\u3eIsurus oxyrinchus\u3c/em\u3e), with a focus on quantifying predation on bluefish (\u3cem\u3ePomatomus saltatrix\u3c/em\u3e) in the northwest Atlantic Ocean

    Get PDF
    The diet and daily ration of the shortfin mako (Isurus oxyrinchus) in the northwest Atlantic were re-examined to determine whether fluctuations in prey abundance and availability are ref lected in these two biological variables. During the summers of 2001 and 2002, stomach content data were collected from fishing tournaments along the northeast coast of the United States. These data were quantified by using four diet indices and were compared to index calculations from historical diet data collected from 1972 through 1983. Bluefish (Pomatomus saltatrix) were the predominant prey in the 1972–83 and 2001–02 diets, accounting for 92.6% of the current diet by weight and 86.9% of the historical diet by volume. From the 2001– 02 diet data, daily ration was estimated and it indicated that shortfin makos must consume roughly 4.6% of their body weight per day to fulfill energetic demands. The daily energetic requirement was broken down by using a calculated energy content for the current diet of 4909 KJ/kg. Based on the proportional energy of bluefish in the diet by weight, an average shortfin mako consumes roughly 500 kg of bluefish per year off the northeast coast of the United States. The results are discussed in relation to the potential effect of intense shortfin mako predation on bluefish abundance in the region

    Habitat Selection of a Coastal Shark Species Estimated from an Autonomous Underwater Vehicle

    Get PDF
    Quantifying habitat selection in marine organisms is challenging because it is difficult to obtain species location information with multiple corresponding habitat measurements. In the ocean, habitat conditions vary on many spatiotemporal scales, which have important consequences for habitat selection. While macroscale biotic and abiotic features influence seasonal movements (spatial scales of 100-1000 km), selectivity of conditions on mesoscales (1-100 km) reflects an animal’s response to the local environment. In this study, we examined habitat selectivity by pairing acoustic telemetry with environmental habitat parameters measured by an autonomous underwater vehicle (AUV), and demonstrate that migrating sand tiger sharks Carcharias taurus along the East Coast of the USA did not randomly use the coastal environment. Of the variables examined, we found evidence to suggest that sand tigers were selecting their habitat based on distance to shore, salinity, and colored dissolved organic matter (CDOM). Notably, temperature was not predictive of habitat use in our study. We posit that during their coastal migration, sand tigers select for specific mesoscale coastal habitats that may inform navigation or feeding behaviors. To our knowledge, this is the first empirical measure of mesoscale habitat selection by a coastal marine organism using an AUV. The applications of this method extend beyond the habitat selectivity of sand tigers, and will prove useful for future studies combining in situ observations of marine habitats and animal observations

    Convergence of marine megafauna movement patterns in coastal and open oceans

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 115 (2018): 3072-3077, doi:10.1073/pnas.1716137115.The extent of increasing anthropogenic impacts on large marine vertebrates partly depends on the animals’ movement patterns. Effective conservation requires identification of the key drivers of movement including intrinsic properties and extrinsic constraints associated with the dynamic nature of the environments the animals inhabit. However, the relative importance of intrinsic versus extrinsic factors remains elusive. We analyse a global dataset of 2.8 million locations from > 2,600 tracked individuals across 50 marine vertebrates evolutionarily separated by millions of years and using different locomotion modes (fly, swim, walk/paddle). Strikingly, movement patterns show a remarkable convergence, being strongly conserved across species and independent of body length and mass, despite these traits ranging over 10 orders of magnitude among the species studied. This represents a fundamental difference between marine and terrestrial vertebrates not previously identified, likely linked to the reduced costs of locomotion in water. Movement patterns were primarily explained by the interaction between species-specific traits and the habitat(s) they move through, resulting in complex movement patterns when moving close to coasts compared to more predictable patterns when moving in open oceans. This distinct difference may be associated with greater complexity within coastal micro-habitats, highlighting a critical role of preferred habitat in shaping marine vertebrate global movements. Efforts to develop understanding of the characteristics of vertebrate movement should consider the habitat(s) through which they move to identify how movement patterns will alter with forecasted severe ocean changes, such as reduced Arctic sea ice cover, sea level rise and declining oxygen content.Workshops funding granted by the UWA Oceans Institute, AIMS, and KAUST. AMMS was supported by an ARC Grant DE170100841 and an IOMRC (UWA, AIMS, CSIRO) fellowship; JPR by MEDC (FPU program, Spain); DWS by UK NERC and Save Our Seas Foundation; NQ by FCT (Portugal); MMCM by a CAPES fellowship (Ministry of Education)

    Supplemental Feeding for Ecotourism Reverses Diel Activity and Alters Movement Patterns and Spatial Distribution of the Southern Stingray, \u3cem\u3eDasyatis americana\u3c/em\u3e

    Get PDF
    Southern stingrays, Dasyatis americana, have been provided supplemental food in ecotourism operations at Stingray City Sandbar (SCS), Grand Cayman since 1986, with this site becoming one of the world’s most famous and heavily visited marine wildlife interaction venues. Given expansion of marine wildlife interactive tourism worldwide, there are questions about the effects of such activities on the focal species and their ecosystems. We used a combination of acoustic telemetry and tag-recapture efforts to test the hypothesis that human-sourced supplemental feeding has altered stingray activity patterns and habitat use at SCS relative to wild animals at control sites. Secondarily, we also qualitatively estimated the population size of stingrays supporting this major ecotourism venue. Tag-recapture data indicated that a population of at least 164 stingrays, over 80% female, utilized the small area at SCS for prolonged periods of time. Examination of comparative movements of mature female stingrays at SCS and control sites revealed strong differences between the two groups: The fed animals demonstrated a notable inversion of diel activity, being constantly active during the day with little movement at night compared to the nocturnally active wild stingrays; The fed stingrays utilized significantly (

    Spatial ecology of Carcharias taurus in the northwestern Mid-Atlantic coastal ocean

    Get PDF
    The sand tiger shark Carcharias taurus is a highly migratory coastal species with declining populations worldwide. This species exhibits many behaviors that make coastal sharks difficult to manage, including aggregatory behavior, sexual segregation, and large-scale migrations through shallow coastal waters with many opportunities for human interactions. Sand tigers from the Western North Atlantic subpopulation are known to seasonally inhabit Delaware Bay and surrounding coastal waters. This region has been recommended as a habitat area of particular concern for the Western North Atlantic sand tiger population, and increased understanding of their movements and habitat requirements will facilitate management efforts. We developed models to predict sand tiger occupancy using spatially dynamic environmental predictors. Our models predicted sand tiger (juveniles, adult males, adult females, and all sharks combined) occurrences in 2 study regions, the Delaware Bay and the western Mid-Atlantic coastal ocean. Sea surface temperature, day of year, water depth, and remote sensing reflectance at 555 nm were the most important environmental predictors of occurrence, and correctly predicted 80-89% of sand tiger acoustic telemetry records in the 2 study regions. Our models predicted differences in the timing and location of occurrences among juveniles and adults, as well as areas where these life history stages overlap in the Mid-Atlantic coastal ocean. Our hope is that a daily forecast of sand tiger occurrence from our modeling efforts could be useful for conservation and management efforts in this important region, as well as for studying the spatial and behavioral ecology of this important top predator
    corecore