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INTRODUCTION

The removal of sharks from the ocean negatively
affects the health of the ecosystems, as these top
predators serve an important role in structuring the
food web through consumptive and non-consumptive
effects (Stevens et al. 2000, Myers & Worm 2003,
Burkholder et al. 2013, Bornatowski et al. 2014). For
these reasons, there is much concern about declining
shark populations worldwide, and managers are
making efforts to enact meaningful conservation and
management strategies to reverse these trends

(Topel ko & Dearden 2005, Kinney & Simpfendorfer
2009). Many sharks, especially those that inhabit the
coastal ocean, face direct anthropogenic threats such
as habitat degradation and fishing pressures (Speed
et al. 2010, Kneebone et al. 2013, Kilfoil et al. 2017).
The majority of temperate coastal sharks undergo
large-scale seasonal migrations, traversing political
boundaries, and necessitating coordination among
managing organizations to effectively manage the
entire population (Musick et al. 2000, Speed et al.
2010). Furthermore, many coastal sharks segregate
by life history stage (Simpfendorfer et al. 2005, Sims
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ABSTRACT: The sand tiger shark Carcharias taurus is a highly migratory coastal species with
declining populations worldwide. This species exhibits many behaviors that make coastal sharks
difficult to manage, including aggregatory behavior, sexual segregation, and large-scale migra-
tions through shallow coastal waters with many opportunities for human interactions. Sand tigers
from the Western North Atlantic subpopulation are known to seasonally inhabit Delaware Bay
and surrounding coastal waters. This region has been recommended as a habitat area of particular
concern for the Western North Atlantic sand tiger population, and increased understanding of
their movements and habitat requirements will facilitate management efforts. We developed
models to predict sand tiger occupancy using spatially dynamic environmental predictors. Our
models predicted sand tiger (juveniles, adult males, adult females, and all sharks combined)
occurrences in 2 study regions, the Delaware Bay and the western Mid-Atlantic coastal ocean. Sea
surface temperature, day of year, water depth, and remote sensing reflectance at 555 nm were the
most important environmental predictors of occurrence, and correctly predicted 80−89% of sand
tiger acoustic telemetry records in the 2 study regions. Our models predicted differences in the
timing and location of occurrences among juveniles and adults, as well as areas where these life
history stages overlap in the Mid-Atlantic coastal ocean. Our hope is that a daily forecast of sand
tiger occurrence from our modeling efforts could be useful for conservation and management
efforts in this important region, as well as for studying the spatial and behavioral ecology of this
important top predator.
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2005, Speed et al. 2010, Bansemer & Bennett 2011,
Haulsee et al. 2016), which can result in segments of
the population being disproportionally affected by
disturbances and/or protective measures.

Passive acoustic telemetry is commonly used to
monitor the movements and migrations of marine
animals (Heupel et al. 2006, Donaldson et al. 2014,
Hussey et al. 2015). This technique allows re -
searchers to monitor numerous individuals of spe-
cies large enough to carry a transmitter into the
detection range of moored acoustic receiving arrays
(Jackson 2011, Kneebone et al. 2012, Haulsee et al.
2015). To understand how these movements are
related to the environment, locations from acoustic
telemetry need to be appropriately matched to envi-
ronmental predictors. Environmental sensors, such
as those aboard the MODIS-Aqua, collect measure-
ments such as sea surface temperature (SST) and
ocean color at scales relevant for dynamic broad-
scale species distribution models (Breece et al. 2016,
Scales et al. 2017). Ocean temperature often relates
to a species distribution exhibited by marine organ-
isms due to physiological constraints (Manderson
2016), and water color properties are often consid-
ered proxies for in situ properties such as turbidity,
salinity, and chlorophyll a concentrations, an indica-
tor of primary productivity (Siegel et al. 2005,
Geiger et al. 2013). Even though remotely sensed
temperature and color are measured on the surface
of the ocean, a growing number of studies have
documented their value in predicting marine species
distributions (Adams et al. 2016, Breece et al. 2016,
Hazen et al. 2017).

The sand tiger Carcharias taurus is a large coastal
shark with discrete sub-populations found in sub-
tropical-temperate coastal waters around the world
(Ahonen et al. 2009). Their low productivity, slow
growth, and aggregatory behavior has put sand
tigers at risk from recreational fishing and as
bycatch in commercial fisheries, and they have
been identified as highly prone to extinction (García
et al. 2008). Sand tigers have experienced popula-
tion declines worldwide and are listed as ‘Vulnera-
ble’ (Pollard & Smith 2009) and ‘Critically Endan-
gered’ in 2 subpopulations by the IUCN (Eastern
Australia: Pollard et al. 2003 and Southwest Atlantic:
Chiaramonte et al. 2007). Sand tigers are listed as a
‘species of concern’ by the National Oceanic and
Atmospheric Administration (NOAA) (Carlson et al.
2009), and NOAA is considering designating Dela-
ware Bay, USA, as a ‘habitat area of particular con-
cern’ in an effort to work towards recovery of the
stock (NOAA 2017).

Sand tigers have been documented making sea-
sonal migrations in the coastal ocean in all of their ma-
jor populations (i.e. Northwest Atlantic: Kneebone et
al. 2014, Teter et al. 2015, Haulsee et al. 2016; South-
west Atlantic: Lucifora et al. 2002; South Africa:
Dicken et al. 2007; and eastern Australia: Bansemer &
Bennett 2011), which are thought to be related to their
reproduction and seasonal habitat suitability. In the
Northwest Atlantic Ocean, sand tigers are often found
aggregating in schools (Compagno 2001, Carlson et
al. 2009). Adults and juveniles frequent the Dela ware
Bay and the surrounding coastal ocean from the early
spring to the late fall (Compagno 2001, Kilfoil 2017,
Haulsee et al. 2015, 2016). The range of juveniles ap-
pears to extend much further north along the US east
coast than the range of adults, but the reason for this
difference in range is unknown (Kneebone et al.
2014). In addition, there is also evidence for sexually
segregated migration patterns in adult sand tigers
during the fall off of the Mid-Atlantic coast, with some
adult females using waters further offshore than the
rest of the population (Teter et al. 2015). It is hypothe-
sized that mating and pupping occur in coastal waters
off the southeastern US, but to our knowledge it re-
mains unclear where and when these behaviors
occur. Both juveniles and adults have been observed
as far south as the coastal waters off Florida, USA
(Kneebone et al. 2014 and D. Fox unpubl. data). The
environmental conditions driving sand tiger distribu-
tion along the US east coast are poorly understood,
and estimating the utility of such conditions to predict
their occurrence may help towards explaining their
distribution and migratory behavior.

We used passive acoustic telemetry and remotely
sensed ocean surface measurements to spatially re -
solve the migration and habitat use of sand tigers in
the western Mid-Atlantic coastal ocean (Mid-Atlantic
Bight). Our models create spatially explicit age- and
sex-based occurrence predictions, and re veal sea-
sonally distinct migratory corridors. These predictive
models can be incorporated into real-time spatial
data streams for use by managers working to con-
serve this species of concern.

MATERIALS AND METHODS

Location record collection

Sand tiger location records were obtained using
passive acoustic telemetry. This study leveraged tag-
ging efforts for projects carried out by Delaware
State University and the University of Delaware be -



Haulsee et al.: Spatial ecology of Carcharias taurus

tween 2007 and 2013 (Haulsee et al. 2015, 2016, Kil-
foil et al. 2017). During that time, 303 sand tigers
were captured and tagged with acoustic transmitters
(V16-6H, n = 207; V16P-6H, n = 43; V16-5H, exter-
nal, n = 33; VMT-1H/V16-4H dual tagged, n = 20;
VEMCO) in the Delaware Bay and surrounding
Delaware coastal waters in accordance with the
Delaware Department of Natural Resources and
Environmental Control (DNREC; 2012-021F), Dela -
ware State University Institutional Animal Care and
Use Committee (IACUC) and the University of Dela-
ware IACUC (1259-2014-0). Battery life of transmit-
ters deployed ranged from 4−10 yr, allowing us to
monitor individual sand tigers for multiple years.
Most transmitters were internally implanted into the
coelomic cavity unless otherwise noted in the initial
study publication (see Haulsee et al. 2015, 2016, Kil-
foil et al. 2017 for tag implantation methodo logy).
Acoustic transmitter pulse rates varied be tween 10
and 190 s. Sex, fork length, and total length (TL)
were documented for each sand tiger.

Acoustic transmitters were recorded on VR2 and
VR2W (VEMCO) passive acoustic receivers deployed
in the Delaware Bay and nearby coastal ocean in wa-
ters up to 25 m deep (Fig. 1). For logistical reasons, the
entire acoustic array was not deployed year-round;
however, during most years, receivers in the coastal
ocean were present during all seasons. We were un-
able to estimate the detection ranges for the receivers
in this array, but previous studies have estimated the
detection range of VR2 and VR2W acoustic receivers
to be at most 1.4 km, and average detection ranges
are usually <600 m (Kessel et al. 2014, Haulsee et al.
2015, Kilfoil et al. 2017, Oliver et al. 2017). These de-
tection range estimates are consistent with the spatial
grain of our model projections (see below). Acoustic
receiver detection range can vary over time depend-
ing on conditions and transmitter power, which could
result in an underestimation of sand tiger presence.
The acoustic records were manually filtered to re -
move tags that remained on a single receiver continu-
ously for multiple seasons (likely dropped tags, ex-
truded tags, or a sand tiger that perished) or to remove
detections that were likely caused by code collision
(e.g. single detections).

Model data preparation

Our study focuses on detections of sand tigers
between 16 May 2009 and 31 August 2013. Individ-
ual sand tiger occurrences on acoustic receivers were
treated as daily events at each location. A sand tiger

could therefore be present on multiple receivers in
various environmental conditions each day, but each
receiver was only counted as a presence once per
day to eliminate auto-correlation. The time between
the date of transmitter deployment and the last date
of detection of that transmitter was considered the
time interval where the individual could be counted
as present or absent. Each receiver station where a
transmitter was not detected in this time interval was
considered an absence for that individual.

Predictor variables

Sand tiger presences and absences were matched
to daily, 1 km2 sea surface environmental conditions
measured by the MODIS-Aqua satellite sensor. Daily
level 2 MODIS-Aqua data were retrieved from the
NASA Ocean Color Biology Processing Group, pro-
cessed to 1 km2 resolution, and were aggregated here
(http://basin.ceoe.udel.edu/thredds/dodsC/ Aqua 1
DayAggregate.nc.html) as part of the Mid-Atlantic
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Fig. 1. Study domain in the western mid-Atlantic coastal
ocean off the USA east coast. Colored points represent the po-
sitions of VEMCO VR2W moored receiving stations deployed
between 2009 and 2013. Detection records recorded by these
receivers provided presences and absences of acoustically 

tagged sand tiger sharks Carcharias taurus
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Regional Association Coastal Ocean Observing Sys-
tem (MARACOOS). Remote sensing data were spa-
tially restricted to the Mid-Atlantic coastal ocean be-
tween coastal Rhode Island and Cape Hatteras, North
Carolina, which is the approximate extent of MARA-
COOS. In total, 30 sea surface satellite products were
matched to sand tiger presences and absences (see
Figs. S1 & S2 and Table S1 in Supplement 1 at www.
int-res. com/ articles/ suppl/  m597 p191_ supp. pdf). The
water depth at each receiver station was ex tracted
from a high-resolution bathymetry map (1 arc-second,
NOAA National Centers for Environmental Informa-
tion, U.S. coastal relief model). We also included day of
year as a potential predictor variable to account for
seasonality and migration cues not captured by the
 satellite-measured environmental datasets.

To reduce the number of predictor variables in -
cluded in the habitat model, we computed the informa-
tion value scores for each predictor using the   create _
infotables function in the R statistical enviro ment
 (InformationValue; Prabhakaran 2016, R Core Team
2017). For predictor variables that were correlated (|r| >
0.70), the predictor variable with the highest informa-
tion value was selected for model testing (Wegmann et
al. 2016). In addition, the availability of predictor vari-
ables on future satellite observation platforms was also
considered as a factor for predictor suitability.

Model design and selection

To model the non-linear relationship between sand
tiger occurrence and the environment, we used gen-
eralized additive mixed models (GAMMs; Lin &
Zhang 1999). Similar to generalized additive models
(Hastie & Tibshirani 1990), this modeling technique
estimates the complex relationships between predic-
tor (e.g. remotely sensed environmental variables)
and binomial response (e.g. presence/absence of sand
tigers) variables, but allows for the interaction of a
random effect (e.g. individual sand tiger behavior;
Wood 2004, 2006, Aarts et al. 2008, Manderson et al.
2014). GAMMs were fit using the ‘gamm4’ package
(Wood & Scheipl 2016) in the R statistical environment.
Thin plate penalized shrinkage smoothers (ts) were
used to model the relationship between fixed environ-
mental effects and the binomial re sponse (presence/
absence) of sand tigers. Specifying a maximum of 6
knots (representing the maximum number of inflec-
tions in fitted models), we limited smoothers to a max-
imum of 5 effective degrees of freedom to reduce
model over-fitting and complexity (Wegmann et al.
2016). The use of shrinkage smoothers penalizes the

degrees of freedom of smoothed covariates that do not
contribute to model performance (Marra & Wood
2011). Tensor product smooths (t2) were used to test
2-way interactions between different combinations of
environmental variables (Wood et al. 2013).

Preliminary data exploration and observations in
the field suggested that the relationship between
sand tiger presence and their environment differed
depending on whether they were inside or outside of
Delaware Bay. In addition, changes in the behavior
of the animals (i.e. migrations in the coastal ocean vs.
over-summering in Delaware Bay, Haulsee et al.
2016), led to differences in habitat use. Because of
these reasons, we chose to build separate models for
sharks inside and outside of Delaware Bay. To test for
potential behavioral response differences among the
different life history stages as observed in other
shark species (Sims 2005, Mucientes et al. 2009), we
also built separate models inside and outside of the
bay based on the size (at time of tagging) and sex.
Males <190 cm TL and females <220 cm TL were
considered juveniles (Gilmore et al. 1983). Prelimi-
nary data exploration showed no difference in the
behavior between male and female juveniles, and
therefore they were combined.

We systematically tested for effects of interactions
with the selected environmental predictors using
reduction of Akaike’s information criterion (AIC) as
an indicator of increased model performance (Wood
2006). Including too many interaction terms can pre-
vent models from converging, or can cause models to
become so complex that they are no longer inter-
pretable. Keeping this in mind, we selected models
that had reduced AIC scores, but were still ecologi-
cally interpretable and were the least complex.

To calculate how much the predictor variables
were contributing to the overall performance of our
top models, we used the ‘varImpBiomod’ function in
R (source code available here: https://bitbucket.org/
rsbiodiv/ species_distribution_model/src, Wegmann et
al. 2016). This function returns the variable impor-
tance score for each predictor variable in the final top
models by systematically pulling out and randomiz-
ing each variable, and then correlating the prediction
made after randomization to the prediction made by
the original model (Wegmann et al. 2016).

To test for potential model over-fitting, we ran a 5-
fold cross validation of our top selected models (Weg-
mann et al. 2016). Over 5 iterations, the top models
were re-trained on 80% of the data, reserving 20%
of the data to use for prediction using the newly cre-
ated model parameters. From this cross validation, a
 probability of occurrence was predicted for every

http://www.int-res.com/articles/suppl/m597p191_supp.pdf
http://www.int-res.com/articles/suppl/m597p191_supp.pdf
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presence and absence observation, allowing us to
calculate the explained deviance (r2), sensitivity
(presences correctly predicted), specificity (absences
correctly predicted), optimal threshold (predicted
pre valence where sensitivity equals specificity), per-
cent correctly classified (PCC), and the area under the
receiver operating curve (AUC), using the ‘Presence
Absence’ package in R (Freeman 2008).

Model visualizations

Relative probability of occurrence maps were cre-
ated by inputting historic 1 km2 satellite layers from
NASA’s MODIS-aqua satellite freely available online
(http://basin.ceoe.udel.edu/thredds/catalog.html)
into the best performing models in R. Coastal ocean
models were used to model sand tiger occurrence in
the broader Mid-Atlantic coastal ocean, while the
Delaware Bay models were used to model their
occurrence within the confines of the Delaware Bay.
For static visualizations, we used 8 d climatologies of
satellite predictor variables from 2002−2016 to create
probability of occurrence maps based on the average
conditions. Input datasets were constrained to only
include data values within the ranges of the matched
predictor variables to avoid extrapolation of model
predictions into novel conditions.

Ecological overlap

We visualized areas of overlap between adults and
juveniles using the top models created for each sub-
group inside of the Delaware Bay and in the coastal
ocean model domains. Occurrences of adults (males
and females combined for visualization simplicity)
and juveniles (males and females combined) were
predicted using the top models for each sub-group
and the 8 d climatologies of satellite predictor vari-
ables as inputs. Predicted probability of occurrence
levels above the optimal threshold for each sub-
group were considered a presence for that sub-
group, and predicted probability of occurrence be -
low the threshold was considered an absence.

RESULTS

Sand tiger detections

Between 16 May 2009 and 31 August 2013, we
recorded 52 674 daily detection events for 264 of the

303 acoustically tagged sand tigers in the Delaware
Bay and the coastal ocean VR2W acoustic receiver
arrays (Fig. 1). Of these detections, 17% (8776) were
matched to 1 d environmental predictor variables
measured by satellite due to missing data in the
satellite record (i.e. clouds). This dataset was derived
from 109 juveniles (34 males, 75 females), 102 adult
males, and 45 adult females. The Delaware Bay study
region contained more receivers than the coastal
ocean study region, and therefore also recorded
more matched acoustic detections of sand tigers
(8211 vs. 565). During this time, there were 6 481 980
absences, or cumulative days when receivers and
transmitters were both active for all transmitters
combined; however, only 1 295 315 (~20%) of those
absences could be matched to satellite-measured
environmental variables. Large sample sizes can
substantially increase machine time and also prevent
model convergence (Wood et al. 2013), thus we ran-
domly sub-sampled 5% (64766) of the absences for
GAMM input. The number of presences and ab -
sences per individual contributing to each model var-
ied (see Fig. S3 in Supplement 1).

Environmental predictors and model selection

Analysis of the information valuation and correla-
tion among environmental predictor variables re -
duced the number of variables for model testing from
30 to 4. In the coastal ocean, the top model for juve-
niles, adult males, and all sharks combined included
combinations of day of year (DOY), SST, water depth,
and remote sensing reflectance at 555 nm (Rrs555;
Table 1, and see Table S2 in Supplement 1). The top
model for adult females in the coastal ocean in cluded
SST, DOY, and Rrs555 (Table 1; see Table S2). In the
Delaware Bay study re gion, the top models included
combinations of depth, SST, and DOY (Table 1; see
Table S3).

Environmental conditions where sand tigers were
present differed between the coastal ocean and
Delaware Bay and also by life history stage (Table 2).
Generally, the mean depth where sand tigers were
recorded appears shallower in the Delaware Bay
than in the coastal ocean (Table 2). Sand tigers were
found in colder surface water temperatures in the
coastal ocean than in the Delaware Bay (Table 2).
Juveniles consistently arrived earlier to the coastal
ocean and Delaware Bay study regions (Fig. 2) and
were found in cooler SSTs than adult males and
females, although the average SSTs were similar
among life history stages (Table 2). In the coastal
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ocean study region, Rrs555 varied little among life his-
tory stages (Table 2).

Trends in variable importance were similar for
each model in the coastal ocean study region, with
the exception of adult females (see Fig. S4a in Sup-
plement 1). SST and DOY contributed the most to all
models except for adult females (see Fig. S4a in Sup-
plement 1) where DOY and Rrs555 were most impor-
tant. In the Delaware Bay, DOY was the most impor-
tant predictor variable for models of all sharks, adult
females, and juveniles, followed by depth and SST
(see Fig. S4b in Supplement 1). The adult male model
differed, with depth and DOY contributing similarly
to the model, followed by SST (see Fig. S4b in Sup-
plement 1).

Coastal ocean model results

In the coastal ocean study region, the
response curves for depth in models of all
sharks, adult males, and juveniles were
generally bimodal, with peaks in positive
response occurring at ~12 and ~23 m
depth for adult males, and at ~10 and 21 m
for juveniles (Fig. 3). Patterns in sand tiger
response to Rrs555 were also generally
 similar among the 4 top models, with a
positive model response in waters with
Rrs555 measurements >0.005 sr−1 and high
uncertainty in waters with the highest
Rrs555 values (Fig. 3). The relationships be -
tween SST and DOY for all models were
generally similar, with positive model re -
sponses regardless of SST be tween DOY
~100 and 300 (April−October, Fig. 3). The
adult female model had a negative res -
ponse of shark occurrence before DOY
~100 and after DOY ~300 regardless of
SST (Fig. 3). The all-sharks, juvenile, and
adult male models had a negative re -
sponse of shark occurrence before DOY
~100 and after DOY ~300 if the SST was
less than ~20°C, but had a positive re -
sponse during that time if SST was greater
than ~20°C (Fig. 3).

Delaware Bay model results

In Delaware Bay, a positive model re -
sponse was shifted ~50 d later in the
spring compared to the coastal ocean
(May− June), but was similar in the fall,
with the negative model response ob -

served on DOY ~300 (Fig. 4), which corresponds to
patterns ob served in Fig. 2. The interaction between
SST and depth is complex for these models, but in
general, waters warmer than around 15°C were pre-
dictive of sand tigers (Fig. 4). For all sharks com-
bined, there was an avoidance of cooler deep waters
(Fig. 4a), although this may have been influenced by
the strong avoidance of cool deep waters by juveniles
(Fig. 4d), as the adult male and female models show
an avoidance of cool shallow waters in the bay
(Fig. 4b,c). A positive response for the adult male and
adult female models occurred in the deepest waters
when SST was ~15−18°C, or in a bi-modal distribu-
tion at the shallowest depths and water ~18−20 m
when the SST was highest (Fig. 4b,c).
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Predictor variables    edf    Threshold   PCC   Sens.  Spec.   AUC    r2

Coastal ocean                                                                                       
All                                             0.02        0.88    0.87    0.88    0.95   0.42
s(Depth)                     4.88                                                                      
s(Rrs555)                       4.10                                                                      
t2(SST, DOY)            18.02                                                                     

Adult males                              0.03        0.89    0.87    0.89    0.95   0.42
s(Depth)                     4.85                                                                      
s(Rrs555)                       4.02                                                                      
t2(SST, DOY)            12.94                                                                     

Adult females                           0.02        0.86    0.83    0.86    0.93   0.36
s(Rrs555)                       3.01                                                                      
t2(SST, DOY)             5.74                                                                      

Juveniles                                  0.01        0.85    0.90    0.85    0.96   0.46
s(Depth)                     4.58                                                                      
s(Rrs555)                       3.09                                                                      
t2(SST, DOY)            15.38                                                                     
                                                                                                                
Delaware Bay                                                                                        
All                                             0.25        0.81    0.81    0.81    0.89   0.49
s(DOY)                       4.77                                                                      
t2(SST, Depth)          24.58                                                                     

Adult males                              0.25         082     0.83    0.82    0.90   0.51
s(DOY)                       4.71                                                                      
t2(SST, Depth)          16.51                                                                     

Adult females                           0.24        0.80    0.80    0.80    0.86   0.41
s(DOY)                       4.12                                                                      
t2(SST, Depth)          13.99                                                                     

Juveniles                                  0.25        0.81    0.80    0.81    0.89   0.47
s(DOY)                       4.82                                                                      
t2(SST, Depth)          23.11

Table 1. Top performing generalized additive mixed model summaries for
models predicting sand tiger Carcharias taurus occurrence in the coastal
ocean and Delaware Bay study regions. edf: estimated degrees of free-
dom; PCC: percent correctly classified; Sens.: sensitivity (percent pres-
ences correctly predicted); Spec.: specificity (percent absences correctly
predicted); AUC: area under the receiver operating curve; s: thin plate re-
gression spline smoother; t2: tensor product smoother; SST: sea surface
temperature; DOY: day of year; Rrs555: remote sensing reflectance at 

555 nm. All variables are significant at p < 0.001



Model validation

Cross-validation confirmed that our models per-
formed well and were not over-fit. In the coastal
ocean models, sensitivity scores ranged from 0.83−
0.90, and specificity scores ranged from 0.85−0.89,
indicating that these models are correctly predicting
presences and absences of sand tigers 87% (average
PCC across all models) of the time in the coastal
study domain (Table 1). In the Delaware Bay models,
sensitivity and specificity were slightly lower (0.80−
0.83 and 0.80−0.82, respectively), with an average
PCC of 81% (Table 1).

Spatial distribution and habitat overlap

The top models for all life history subgroups and all
sharks combined in each study region were used to
create prediction maps of the probability of occur-
rence. Daily satellite imagery or climatologies were
used for model projection. These outputs show dyna -
mic patterns in potential sand tiger use of the Mid-
Atlantic coastal ocean and Delaware Bay study re -
gions (see Supplemental Movies 1−4 at www. int-res.
com/ articles/ suppl/ m597 p191_ supp/ as examples).

All of the models predicted zero probability of oc -
currence in the winter months (Figs. 5a & 6a, see
Figs. S5a−S10a in Supplement 1).

Model predictions showed that sand tigers arrive in
the coastal ocean in early May, with highest occur-
rences in the shallow, nearshore waters (Fig. 5b).
However, most of these early arrivals appear to be
juveniles (Figs. S5b−S7b). Following the juveniles,
adults also appear to migrate into the coastal ocean
study region using a narrow band of shallow near-
shore water (Supplemental Movies 1−4). Sand tigers
then enter Delaware Bay in early June (DOY 150),
with some avoidance of the main channel and shal-
low sand flats (Fig. 6b).

By August (DOY ~215), sand tigers were using
shallow nearshore waters (Fig. 5c), and the shallowest
and deepest parts of Delaware Bay (Fig. 6c). Juveniles
and adult females had lower probabilities of occur-
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Fig. 2. Density of sand tiger Carcharias taurus presences
recorded by VEMCO VR2W moored acoustic receivers in (a)
the coastal ocean and (b) the Delaware Bay study regions for 

2009−2013

Predictor Coastal ocean Delaware Bay
variable               Range       Mean           Range       Mean

All                                                                                     
Depth (m)        5.70−24.40    16.42        1.90−20.30     8.03
SST (°C)         13.26−26.64   20.32       12.89−30.83   24.96
DOY                  120−295       261           115−294       222
Rrs555 (sr−1)      0.002−0.014   0.007                −               −

Adult males                                                                     
Depth (m)        5.70−24.40    16.69        1.90−20.30     8.15
SST (°C)         16.99−26.64   21.30       17.07−30.83   25.15
DOY                  150−290       256           151−289       220
Rrs555 (sr−1)      0.002−0.013   0.006                −               −

Adult females                                                                  
Depth (m)        5.70−24.40    16.46        1.90−20.30     7.94
SST (°C)         15.77−25.38   20.29       16.36−30.83   24.56
DOY                  145−290       267           154−294       228
Rrs555 (sr−1)      0.002−0.014   0.007                −               −

Juveniles                                                                          
Depth (m)        8.90−24.40    16.09        1.90−20.30     7.95
SST (°C)         13.63−25.68   19.32       12.89−30.83   24.86
DOY                  120−295       264           115−290       221
Rrs555 (sr−1)     0.002−0.014   0.007                −               −

Table 2. Summary statistics for environmental predictor vari-
ables associated with sand tiger Carcharias taurus presence
in the coastal ocean and Delaware Bay study regions. SST:
sea surface temperature, DOY: day of year, Rrs555: remote 

sensing reflectance at 555 nm

http://www.int-res.com/articles/suppl/m597p191_supp/
http://www.int-res.com/articles/suppl/m597p191_supp/
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Fig. 3. Predictor variable response functions for generalized additive mixed models predicting the binomial response of (a) all,
(b) adult male, (c) adult female, and (d) juvenile sand tigers Carcharias taurus within the coastal ocean study region. Black
lines: smoothed curve of partial additive variable effect on probability of presence; grey shading: 95% confidence interval.
Partial variable responses >0 are predictive of sand tiger occurrences, while partial variable responses <0 are predictive of ab-
sences. Short vertical lines (rug) on the x-axis of single variable plots represent the distribution of variable observations upon
which the model’s response was built. DOY: day of the year; SST: sea surface temperature; Rrs555: remote sensing reflectance 

at 555 nm
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rence in the coastal ocean during the
summer (Figs. S5c−S7c). Areas in the
Delaware Bay with high probabilities
of juvenile and adult male occurrence
appeared similar, but adult females
had lower occurrence predictions in
August (Figs. S8c−S10c).

The fall migration of sand tigers out
of the study re gions occurred in Octo-
ber (DOY ~275). All models predicted
low probabilities of occurrence in Dela -
 ware Bay by early October (Fig. 6d,
Figs. S8d− S10d). In the coastal ocean,
occurrence extended further offshore
than during the spring migration, and
had higher probabilities of occurrence
(Fig. 5d). Sand tigers using the waters
further offshore during the fall were
mainly the adult males and females
(Figs. S5d−S7d).

The seasonal patterns of ecological
habitat overlap by juvenile and adult
(male and female) sand tigers can be
observed in the presence/absence pre-
diction maps based on the optimal
threshold for each model (Supplemen-
tal Movie 5). In the coastal ocean,
these maps and animations show the
earlier arrival of juveniles in the
spring, with juvenile occurrence po -
tentially extending out to the edge of
our model domain (Fig. 7a). In the
summer, juveniles and adults occur to -
gether in the very nearshore waters
along much of the coastline (Fig. 7b).
During the fall migration south, the
area of ocean occupied by both juve-
niles and adults extends further off-
shore again (Fig. 7c). Maps of ecologi-
cal overlap for the Delaware Bay
model show no clear patterns, because
for most of the year, there is overlap
between juveniles and adults through-
out the entire bay at the spatial scale of
our models.

DISCUSSION

Coastal marine species present dif-
ficult management and conservation
issues because they often make large-
scale migrations, segregate by life
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Fig. 4. As in Fig. 3, but for the Delaware Bay study region 
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history stage, and are found in close proximity to
hu mans where they are susceptible to various forms
of exploitation that may fall under the jurisdiction of
multiple entities (Speed et al. 2010). Dynamic habi-
tat models allow managers to identify  species-
specific core habitats, thereby identifying areas of
likely human interaction (Bonfil 1997, Speed et al.
2010, Zydelis et al. 2011, Teter et al. 2015). Our

models use publicly available remotely sensed and
static ocean properties to create predictive distribu-
tion maps for sand tigers. We also analyzed the dif-
ferences in the timing and distribution of juveniles,
adult males, and adult females in the Delaware Bay
and western Mid-Atlantic coastal ocean. This geo-
graphical area is one of active concern for conserva-
tion efforts, as sand tigers have been found to con-
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Fig. 5. Generalized additive mixed model probability of occurrence predictions (colors) for all sand tiger Carcharias taurus oc-
currence in the coastal ocean study region in (a) winter, (b) spring, (c) summer, and (d) fall using an 8 d climatology of sea sur-
face temperature (SST) and remote sensing reflectance at 555 nm (Rrs555) from the MODIS-aqua satellite record, day of year,
and depth as predictor inputs. Inset map shows predictions within the approximate domain of acoustic receiver arrays, where
model performance was cross validated. Predictions outside of the inset should be considered preliminary. Dates above each 

panel (mo−d) reflect the first day of each 8 d period for climatological data used for prediction
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sistently return to the Delaware Bay and Mid-
Atlantic coastal ocean during their migrations on an
annual basis (NOAA 2017).

Migration timing and migratory corridors

Results from our GAMMs support current hypothe-
ses of sand tiger migration into and out of the Mid-

Atlantic coastal ocean and Delaware Bay study
regions (Kneebone et al. 2014, Haulsee et al. 2015,
2016, Teter et al. 2015). These movements are highly
seasonal, with juvenile sand tigers consistently arriv-
ing earlier than adult sharks into the Delaware Bay
and coastal ocean, at times arriving almost a month
earlier than adult sharks. In contrast, all sharks left
the coastal ocean the same time every fall (early to
mid-October).
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Fig. 6. Generalized additive mixed model probability of occurrence predictions (colors) for all sand tiger Carcharias taurus oc-
currence in the Delaware Bay study region in (a) winter, (b) spring, (c) summer, and (d) fall using an 8 d climatology of sea sur-
face temperature (SST) from the MODIS aqua satellite record, day of year, and depth as predictor inputs. Dates above each
panel (mo−d) reflect the first day of each 8 d period for climatological data used for prediction. Note the later arrival and earlier 

departure of sharks from the region compared to the coastal ocean (see Fig. 5)
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The gradual arrival and rapid departure of sand
tigers into our study regions indicates that there are
likely different forces driving these behaviors de -
pending on the season. SST is included in all models
and is likely a strong seasonal driver of occurrence.
However, DOY is the most important predictor of
occurrence in almost all models, indicating that there
are seasonal environmental or behavioral drivers
besides SST that may influence the timing of the
migrations of sand tigers. Size segregation in the
spring migration is likely a function of small juveniles
migrating earlier than adults, to avoid interspecific
competition. Adult sharks seem to be reacting to
water temperature, moving north into the Mid-Atlan -
tic coastal ocean only when surface waters warm to
approximately 18°C. In the fall, the abrupt departure
of the juveniles and adults indicates that the migra-
tory cue may be something much more acute. Knee-
bone et al. (2012) concluded that the rapid emi -
gration of juvenile sand tiger sharks from the
Plymouth-Kingston-Duxbury Bay in Massachusetts,
USA, was related to both water temperature and day
length, but that day length might be a much stronger
signal, cueing the dispersal of sharks from the region
because of the consistency in the timing of sand tiger
emigration over their study. We observed a similar
pattern in the rapid emigration of juveniles and
adults from the Delaware Bay and coastal ocean, rep-

resented by the steep slope of the density plots of
sand tiger presence (Fig. 2). This indicates that this
behavior may be engrained in the population in the
Western North Atlantic or possibly related to the
behavioral response of sand tigers and/or their prey
resources to de-stratification of the water column or
other acute changes in environmental variables
along the coast. Teter et al. (2015) detected no sand
tigers on acoustic receivers in the Delaware Bay at
surface temperatures below 18°C, providing evi-
dence that this temperature is an important thermal
threshold for the arrival and departure of sand tigers
or for the prey resources they depend on in the Dela-
ware Bay.

A second notable difference predicted by the
GAMMs was the difference in the migratory corri-
dors used by sand tigers during the spring and fall. In
the spring, the sharks were generally predicted to re -
main in the very nearshore, shallow waters as they
migrated from the southern extent of our study
region, to the Delaware Bay and further north. In the
fall, all sand tigers extended their predicted occur-
rence further offshore. This supports previous obser-
vations of sand tiger migrations during the fall re -
corded by pop-up satellite archival tags (PSATs). In a
previous study, PSATs recorded adult males and
females migrating south or east further offshore (but
note that error around estimated PSAT locations was
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Fig. 7. Overlap of life history stages of sand tiger Carcharias taurus prevalence predicted by generalized additive mixed models in
the coastal ocean study region in (a) spring, (b) summer, and (c) fall using an 8 d climatology of sea surface temperature (SST) and
remote sensing reflectance at 555 nm (Rrs555) from the MODIS-aqua satellite record, day of year, and depth as a predictor inputs. 

Dates above each panel (mo−d) reflect the first day of each 8 d period for climatological data used for prediction
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very large) and in deeper water (average depths 18−
73 m) than our model was able to predict due to the
observation constraints of the acoustic array (<25 m
depth) (Teter et al. 2015). Future studies using satel-
lite tags on sand tigers during their spring migration
would help confirm the differences in migratory cor-
ridors predicted by our models.

Adult females are predicted to occur in higher
 densities further offshore than the other life history
stages. This pattern reflects suggested sexual segre-
gation in the migratory routes chosen by adult males
and females in the fall, with adult females migrating
further offshore than adult males, and potentially
heading east to northeast after emigrating from the
Delaware Bay (Teter et al. 2015, Haulsee et al. 2016).
Our models are likely missing the offshore portion of
female sand tigers due to model constraints, as Teter
et al. (2015) showed that females (sub-adult or re -
cently adult) likely migrate much further offshore in
the fall.

Sexual segregation is common in sharks (Klimley
1987, Sims 2005, Mucientes et al. 2009), but the
underlying reason for this behavior in sand tigers at
this point is not known. Haulsee et al. (2016) reported
that during their southern fall migration, adult males
were not found in close proximity to adult females,
indicating segregation in the population that did not
exist during the summer months, likely due to differ-
ences in the timing and locations of the adult female
migration route. Segregation of adults during fall
migrations may be related to females avoiding mat-
ing, with adult females using deeper waters further
offshore to limit interaction with males (Teter et al.
2015). Klimley (1987) speculated that sexual segre-
gation in scalloped hammerheads Sphyrna lewini re -
sulted from females moving offshore to avoid aggres-
sive males. Another possible explanation for sexual
segregation in sand tigers is that energy require-
ments differ among juveniles and adults of both
sexes. The movement of adult females offshore in the
fall may be a result of increased reproductive energy
demands, whereby individuals are taking advantage
of warmer and more productive Gulf Stream waters
(Teter et al. 2015).

Interpretation of predictor variables

Sand tigers have been documented in ocean tem-
peratures ranging from 9.8−26.9°C for juveniles at
the northern extent of their range (Kneebone et al.
2014), and 13−26°C in the Delaware Bay and sur-
rounding coastal waters (Teter et al. 2015), which

corresponds to the SST range observed for all sharks
in our study (~13−31°C). The interaction between
DOY and SST included in all of the coastal ocean
models allows the model to account for shifts in tem-
perature preferences that may be related to sand
tiger life history; however, due to the additive nature
of a GAMM, these patterns are difficult to interpret
in the response plots.

Rrs555 was included in the coastal ocean models. To
our knowledge, this is the first study to use ocean
color reflectance as a dynamic environmental predic-
tor of shark occurrence. Rrs555 is bright green and is
commonly used in algorithms calculating chlorophyll
a concentrations in the ocean (O’Reilly et al. 1998). In
the coastal ocean, phytoplankton blooms can in -
crease ocean turbidity and coincide with elevated
levels of colored dissolved organic matter (CDOM)
(Vodacek et al. 1997). Previously, a study of sand
tiger sharks in the Mid-Atlantic coastal ocean found
that they were selecting for ocean waters with ele-
vated levels of CDOM (Haulsee et al. 2015). Smale
(2002) also observed a relationship between turbid
waters and increased sand tiger occurrence in the
coastal waters off South Africa. Often, turbidity is
related to freshwater plumes exiting estuarine sys-
tems (Geiger et al. 2013), and may be an olfactory
navigational cue for sand tigers migrating along the
eastern coast of the USA (Montgomery & Walker
2001, Haulsee et al. 2015). In addition, turbid waters
may increase the stealth of a predatory shark stalk-
ing prey (Ebert 1991), allow conspecifics living in rel-
atively close proximity to avoid potentially aggres-
sive interactions (Chin et al. 2013), or simply attract
aggregations of prey fish feeding on phytoplankton
and zooplankton blooms.

Depth as a predictor variable is likely a proxy for
other environmental conditions that are important to
sand tigers. Globally, sand tigers are found around
reefs, shipwrecks, or other forms of physical struc-
ture (Pollard et al. 1996, Smale 2002, Whitfield et al.
2011). In a soft-bottomed system like the Delaware
Bay, rapid changes in depth along the edges of chan-
nels and sloughs may act as surrogates to physical
structure for sand tigers. In addition, sand tigers were
observed in waters with SSTs up to ~31°C in the
Delaware Bay; however, PSATs rarely recorded sand
tigers in ambient sea water temperatures higher than
23°C (Teter et al. 2015), indicating that they may be
choosing to spend time in the deeper channels of the
bay to reduce energetic costs during times of rest,
and moving to warmer and shallower waters only
briefly to feed (Sims et al. 2006). This behavioral
switch may explain our models predicting daily sand
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tiger occurrence in both shallow and deep areas of
Delaware Bay, but observations on the scale of the
individual are necessary to confirm this hypothesis.

CONCLUSIONS

While the extensive Delaware Bay and coastal ocean
acoustic array used in this study covers a large spatial
area and wide range of environmental conditions,
there are limitations in our predictions based on the
 array design and temporal coverage. Due to changes
in ocean conditions, the probability of acoustic trans-
mitter detection likely fluctuated throughout the study.
This likely resulted in an underestimation of the pres-
ences of sand tigers in the study. A more thorough
range testing effort in future studies would allow us to
estimate the probability of detection to include in
model interpretation. Future studies should extend
telemetry assets into deeper waters to locate the off-
shore extent of the sand tiger migratory corridor, ei-
ther by mooring receivers further from the coast,
using mobile telemetry platforms such as wave
gliders or Slocum electric gliders (Oliver et al. 2013,
Haulsee et al. 2015), or deploying additional PSATs on
adult females (Teter et al. 2015). In addition, increased
receiver coverage of the coastal ocean to the north
and south of the Delaware Bay would improve our
confidence in predictions within the full extent of the
Mid-Atlantic study region. Similarly, an independent
dataset of sand tiger occurrence from fishery bycatch
records would be useful to validate our model predic-
tions; however, this dataset is not available at the spa-
tial and temporal resolution of our model at this time.
Until sand tiger locations can be obtained throughout
the broader spatial extent of our model predictions,
predictions outside the extent of the receiver array
and highlighted in Figs. 5 & 6 should be used with
caution. Finally, data limitations on adult female be-
havior require interpretations of modeled adult
female occurrence to be used with caution until future
studies can obtain more observations of their behavior
in the coastal ocean.

By coupling both remotely sensed and static envi-
ronmental predictor variables with presence/ absence
records from a large-scale telemetry project, we cre-
ated dynamic predictive species distribution models
for sand tigers in Delaware Bay and the coastal
ocean. These models incorporate species location
records using acoustic telemetry, with freely available
ocean surface properties. Our models allow us to cre-
ate daily, near real-time forecasts of where sand
tigers are likely to be in the Mid-Atlantic Bight, al-

lowing managers to assess potential interactions be-
tween humans and these sharks. The MODIS Aqua
satellite overpass schedule images the Mid-Atlantic
every afternoon, allowing for a new model prediction
of sand tiger occurrence to be created daily. Clouds
interfere with satellite coverage, meaning that com-
posite satellite images (1, 3, or 8 d) may be necessary
inputs to increase spatial coverage of model predic-
tions, depending on the management question.

Through our efforts, we developed sex and re -
productive stage-specific models to capture habitat
preferences and migratory behaviors related to seg-
regation among sand tigers. As resource managers
continue to develop and implement conservation
strategies for this coastal apex predator, we believe
our models outline features of sand tiger biogeogra-
phy that are necessary for determining occupancy
patterns in nearshore regions. Sand tiger populations
are Critically Endangered (IUCN designation) in the
Southwestern Atlantic and in eastern Australia, and
applying this modeling technique in those regions
may assist recovery ef forts by providing more detail
about habitat use and interactions with humans.
Identifying areas of occupancy allows for dynamic
and directed enforcement of fishing restrictions for
protected species, and al lows managers to seasonally
and spatially restrict construction, dredging, ship-
ping, or fishing activities from occurring in areas
important for conservation. Identifying and predict-
ing habitats where sand tigers or other coastal sharks
of interest likely occur is a powerful tool for identify-
ing essential habitat and potential threats to the
recovery of a population.
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