18 research outputs found

    Laser-welded Dissimilar Steel-aluminum Seams for Automotive Lightweight Construction

    Get PDF
    By reducing vehicle weight, a significant increase in fuel efficiency and consequently a reduction in CO 2 emissions can be achieved. Currently a high interest in the production of hybrid weld seams between steel and aluminum exists. Previous methods as laser brazing are possible only by using fluxes and additional materials. Laser welding can be used to join steel and aluminum without the use of additives. With a low penetration depth increases in tensile strength can be achieved. Recent results from laser welded overlap seams show that there is no compromise in strength by decreasing penetration depth in the aluminum

    Significance of the resonance condition for controlling the seam position in laser-assisted TIG welding

    Get PDF
    As an energy-preserving variant of laser hybrid welding, laser-assisted arc welding uses laser powers of less than 1 kW. Recent studies have shown that the electrical conductivity of a TIG welding arc changes within the arc in case of a resonant interaction between laser radiation and argon atoms. This paper presents investigations on how to control the position of the arc root on the workpiece by means of the resonant interaction. Furthermore, the influence on the welding result is demonstrated. The welding tests were carried out on a cooled copper plate and steel samples with resonant and non-resonant laser radiation. Moreover, an analysis of the weld seam is presented

    Evaluation of the Location and Recency of Faulting Near Prospective Surface Facilities in Midway Valley, Nye County, Nevada

    No full text
    Evaluation of surface faulting that may pose a hazard to prospective surface facilities is an important element of the tectonic studies for the potential Yucca Mountain high-level radioactive waste repository in southwestern Nevada. For this purpose, a program of detailed geologic mapping and trenching was done to obtain surface and near-surface geologic data that are essential for determining the location and recency of faults at a prospective surface-facilities site located east of Exile Hill in Midway Valley, near the eastern base of Yucca Mountain. The dominant tectonic features in the Midway Valley area are the north- to northeast-trending, west-dipping normal faults that bound the Midway Valley structural block-the Bow Ridge fault on the west side of Exile Hill and the Paint-brush Canyon fault on the east side of the valley. Trenching of Quaternary sediments has exposed evidence of displacements, which demonstrate that these block-bounding faults repeatedly ruptured the surface during the middle to late Quaternary. Geologic mapping, subsurface borehole and geophysical data, and the results of trenching activities indicate the presence of north- to northeast-trending faults and northwest-trending faults in Tertiary volcanic rocks beneath alluvial and colluvial sediments near the prospective surface-facilities site. North to northeast-trending faults include the Exile Hill fault along the eastern base of Exile Hill and faults to the east beneath the surficial deposits of Midway Valley. These faults have no geomorphic expression, but two north- to northeast-trending zones of fractures exposed in excavated profiles of middle to late Pleistocene deposits at the prospective surface-facilities site appear to be associated with these faults. Northwest-trending faults include the West Portal and East Portal faults, but no disruption of Quaternary deposits by these faults is evident. The western zone of fractures is associated with the Exile Hill fault. The eastern zone of fractures is within Quaternary alluvial sediments, but no bedrock was encountered in trenches and soil pits in this part of the prospective surface facilities site; thus, the direct association of this zone with one or more bedrock faults is uncertain. No displacement of lithologic contacts and soil horizons could be detected in the fractured Quaternary deposits. The results of these investigations imply the absence of any appreciable late Quaternary faulting activity at the prospective surface-facilities site

    The Shear Deformation Zone and the Smoothing of Faults With Displacement

    Get PDF
    International audienceWe use high-resolution earthquake locations to characterize the three-dimensional structure of active faults in California and how it evolves with fault structural maturity. We investigate the distribution of aftershocks of several recent large earthquakes that occurred on continental strike slip faults of various structural maturity (i.e. various cumulative fault displacement, length, initiation age and slip rate). Aftershocks define a tabular zone of shear deformation surrounding the mainshock rupture plane. Comparing this to geological observations, we conclude that this results from the re-activation of secondary faults. We observe a rapid fall off of the number of aftershocks at a distance range of 0.06-0.22 km from the main fault surface of mature faults, and 0.6-1.0 km from the fault surface of immature faults. The total width of the active shear deformation zone surrounding the main fault plane reaches 1.0-2.5 km and 6-9 km for mature and immature faults, respectively. We find that the width of the shear deformation zone decreases as a power law with cumulative fault displacement. Comparing with a dynamic rough fault model, we infer that the narrowing of the shear deformation zone agrees quantitatively with earlier estimates of the smoothing of faults with displacement, both of which are aspects of fault wear. We find that earthquake stress drop decreases with fault displacement and hence with increased smoothness and/or slip rate. This may result from fault healing or the effect of roughness on friction
    corecore