184 research outputs found

    Improved catalytic activity of ruthenium–arene complexes in the reduction of NAD+

    Get PDF
    A series of neutral Ru-II half-sandwich complexes of the type [(eta(6)-arene)Ru(N,N')Cl] where the arene is para-cymene (p-cym), hexamethylbenzene (hmb), biphenyl (bip), or benzene (bn) and N,N' is N-(2-aminoethyl) -4-(trifluoromethyl)benzenesulfonamide (TfEn), N-(2-aminoethyl)-4-toluenesulfonamide (TsEn), or N-(2-aminoethyl)-methylenesulfonamide (MsEn) were synthesized and characterized. X-ray crystal structures of [(p-cym)Ru(MsEn)Cl] (1), [(hmb)Ru(TsEn)Cl] (5), [(hmb)Ru(TfEn)Cl] (6), [(bip)Ru(MsEn)Cl] (7), and [(bip)Ru(TsEn)Cl] (8) have been determined. The complexes can regioselectively catalyze the transfer hydrogenation of NAD(+) to give 1,4-NADH in the presence of formate. The turnover frequencies (TOF) when the arene is varied decrease in the order bn > bip > p-cym > hmb for complexes with the same N,N' chelating ligand. The TOF decreased with variation in the N,N' chelating ligand in the order TfEn > TsEn > MsEn for a given arene. [(bn)Ru(TfEn)Cl] (12) was the most active, with a TOP of 10.4 h(-1). The effects of NAD(+) and formate concentration on the reaction rates were determined for [(p-cym)Ru(TsEn)Cl] (2). Isotope studies implicated the formation of [(arene)Ru(N,N')(H)] as the rate-limiting step. The coordination of formate and subsequent CO2 elimination to generate the hydride were modeled computationally by density functional theory (DFT). CO2 elimination occurs via a two-step process with the coordinated formate first twisting to present its hydrogen toward the metal center. The computed barriers for CO2 release for arene = benzene follow the order MsEn > TsEn > TfEn, and for the Ms En system the barrier followed bn < hmb, both consistent with the observed rates. The effect of methanol on transfer hydrogenation rates in aqueous solution was investigated. A study of pH dependence of the reaction in D2O gave the optimum pH* as 7.2 with a TOF of 1.58 h(-1) for 2. The series of compounds reported here show an improvement in the catalytic activity by an order of magnitude compared to the ethylenediamine analogues

    Somatostatin receptor in human hepatocellular carcinomas: Biological, patient and tumor characteristics

    Get PDF
    Background/Aim: The evidence on the efficacy of somatostatin analogues in the treatment of hepatocellular carcinoma (HCC) in humans is conflicting. A variety of human tumors demonstrate somatostatin receptors. All subtypes bind human somatostatin with high affinity, while somatostatin analogues bind with high affinity to somatostatin receptor subtype 2 (sst2). We investigated the sst2 expression in HCC and examined whether HCCs expressing sst2 are a distinct subgroup. Patients and Methods: Forty-five human HCCs were tested for sst2 expression and biological alterations. The proliferative capacity was determined with Ki67 immunostaining and the DNA ploidy status was measured by fluorescent in situ hybridization with a chromosome 1-specific repetitive DNA probe. Expression of tumor suppressor genes (p16, p53 and Rb1) was measured by immunohistochemistry. Results: sst2 expression was detected in 30 tumors (67%). No correlation existed between sst2 expression and the immunoprofiles of the tumor suppressor genes, aneuploidy, proliferation, age, gender, α-fetoprotein levels, tumor size, tumor grade and underlying liver disease. Conclusion: In 67% of the patients with HCC, sst2 could be detected in the tumor. No clinical, pathological or biological characteristics were specific for sst2-positive tumors. Copyrigh

    Promoter Hypermethylation-Related Reduced Somatostatin Production Promotes Uncontrolled Cell Proliferation in Colorectal Cancer.

    Get PDF
    BACKGROUND: Somatostatin (SST) has anti-proliferative and pro-apoptotic effects. Our aims were to analyze and compare the SST expression during normal aging and colorectal carcinogenesis at mRNA and protein levels. Furthermore, we tested the methylation status of SST in biopsy samples, and the cell growth inhibitory effect of the SST analogue octreotide in human colorectal adenocarcinoma cell line. METHODS: Colonic samples were collected from healthy children (n1 = 6), healthy adults (n2 = 41) and colorectal cancer patients (CRCs) (n3 = 34) for SST mRNA expression analysis, using HGU133 Plus2.0 microarrays. Results were validated both on original (n1 = 6; n2 = 6; n3 = 6) and independent samples ((n1 = 6; n2 = 6; n3 = 6) by real-time PCR. SST expressing cells were detected by immunohistochemistry on colonic biopsy samples (n1 = 14; n2 = 20; n3 = 23). The effect of octreotide on cell growth was tested on Caco-2 cell line. SST methylation percentage in biopsy samples (n1 = 5; n2 = 5; n3 = 9) was defined using methylation-sensitive restriction enzyme digestion. RESULTS: In case of normal aging SST mRNA expression did not alter, but decreased in cancer (p<0.05). The ratio of SST immunoreactive cells was significantly higher in children (0.70%+/-0.79%) compared to CRC (0%+/-0%) (p<0.05). Octreotide significantly increased the proportion of apoptotic Caco-2 cells. SST showed significantly higher methylation level in tumor samples (30.2%+/-11.6%) compared to healthy young individuals (3.5%+/-1.9%) (p<0.05). CONCLUSIONS: In cancerous colonic mucosa the reduced SST production may contribute to the uncontrolled cell proliferation. Our observation that in colon cancer cells octreotide significantly enhanced cell death and attenuated cell proliferation suggests that SST may act as a regulator of epithelial cell kinetics. The inhibition of SST expression in CRC can be epigenetically regulated by promoter hypermethylation

    Efficient CO2-Reducing Activity of NAD-Dependent Formate Dehydrogenase from Thiobacillus sp KNK65MA for Formate Production from CO2 Gas

    Get PDF
    NAD-dependent formate dehydrogenase (FDH) from Candida boidinii (CbFDH) has been widely used in various CO2 reduction systems but its practical applications are often impeded due to low CO2-reducing activity. In this study, we demonstrated superior CO2-reducing properties of FDH from Thiobacillus sp. KNK65MA (TsFDH) for production of formate from CO2 gas. To discover more efficient CO2-reducing FDHs than a reference enzyme e. CbFDH, five FDHs were selected with biochemical properties and then, their CO2-reducing activities were evaluated. All FDHs including CbFDH showed better CO2-reducing activities at acidic pHs than at neutral pHs and four FDHs were more active than CbFDH in the CO2 reduction reaction. In particular, the FDH from Thiobacillus sp. KNK65IVIA (TsFDH) exhibited the highest CO2-reducing activity and had a dramatic preference for the reduction reaction, i.e., a 84.2-fold higher ratio of CO2 reduction to formate oxidation in catalytic efficiency (k(cat)/K-B) compared to CbFDH. Formate was produced from CO2 gas using TsFDH and CbFDH, and TsFDH showed a 5.8-fold higher formate production rate than CbFDH. A sequence and structural comparison showed that FDHs with relatively high CO2-reducing activities had elongated N- and C-terminal loops. The experimental results demonstrate that TsFDH can be an alternative to CbFDH as a biocatalyst in CO2 reduction systemsope

    Somatostatin and dopamine receptors as targets for medical treatment of Cushing's Syndrome

    Get PDF
    Somatostatin (SS) and dopamine (DA) receptors are widely expressed in neuroendocrine tumours that cause Cushing's Syndrome (CS). Increasing knowledge of specific subtype expression within these tumours and the ability to target these receptor subtypes with high-affinity compounds, has driven the search for new SS- or DA-based medical therapies for the various forms of CS. In Cushing's disease, corticotroph adenomas mainly express dopamine receptor subtype 2 (D2) and somatostatin receptor subtype 5 (sst5), whereas sst2is expressed at lower levels. Activation of these receptors can inhibit ACTH-release in primary cultured corticotroph adenomas and compounds that target either sst5(pasireotide, or SOM230) or D2(cabergoline) have shown significant efficacy in subsets of patients in recent clinical studies. Combination therapy, either by administration of both types of compounds separately or by treatment with novel somatostatin-dopamine chimeric molecules (e.g. BIM-23A760), appears to be a promising approach in this respect. In selected cases of Ectopic ACTH-producing Syndrome (EAS), the sst2-preferring compound octreotide is able to reduce cortisol levels effectively. A recent study showed that D2receptors are also significantly expressed in the majority of EAS and that cabergoline may decrease cortisol levels in subsets of these patients. In both normal adrenal tissue as well as in adrenal adenomas and carcinomas that cause CS, sst and DA receptor expression has been demonstrated. Although selected cases of adrenal CS may benefit from sst or DA-targeted treatment, its total contribution to the treatment of these patients is likely to be low as surgery is effective in most cases

    Maintained partial protection against Streptococcus pneumoniae despite B‐cell depletion in mice vaccinated with a pneumococcal glycoconjugate vaccine

    Get PDF
    Objectives: Anti-CD20 monoclonal antibody therapy rapidly depletes > 95% of CD20+ B cells from the circulation. B-cell depletion is an effective treatment for autoimmune disease and B-cell malignancies but also increases the risk of respiratory tract infections. This effect on adaptive immunity could be countered by vaccination. We have used mouse models to investigate the effects of B-cell depletion on pneumococcal vaccination, including protection against infection and timing of vaccination in relation to B-cell depletion. // Methods: C57BL/6 female mice were B-cell depleted using anti-CD20 antibody and immunized with two doses of Prevnar-13 vaccine either before or after anti-CD20 treatment. B-cell repertoire and Streptococcus pneumoniae–specific IgG levels were measured using whole-cell ELISA and flow cytometry antibody-binding assay. Protection induced by vaccination was assessed by challenging the mice using a S. pneumoniae pneumonia model. // Results: Antibody responses to S. pneumoniae were largely preserved in mice B-cell depleted after vaccination resulting in full protection against pneumococcal infections. In contrast, mice vaccinated with Prevnar-13 while B cells were depleted (with > 90% reduction in B-cell numbers) had decreased circulating anti–S. pneumoniae IgG and IgM levels (measured using ELISA and flow cytometry antibody binding assays). However, some antibody responses were maintained, and, although vaccine-induced protection against S. pneumoniae infection was impaired, septicaemia was still prevented in 50% of challenged mice. // Conclusions: This study showed that although vaccine efficacy during periods of profound B-cell depletion was impaired some protective efficacy was preserved, suggesting that vaccination remains beneficial

    Controlled Orientation of Active Sites in a Nanostructured Multienzyme Complex

    Get PDF
    Multistep cascade reactions in nature maximize reaction efficiency by co-assembling related enzymes. Such organization facilitates the processing of intermediates by downstream enzymes. Previously, the studies on multienzyme nanocomplexes assembled on DNA scaffolds demonstrated that closer interenzyme distance enhances the overall reaction efficiency. However, it remains unknown how the active site orientation controlled at nanoscale can have an effect on multienzyme reaction. Here, we show that controlled alignment of active sites promotes the multienzyme reaction efficiency. By genetic incorporation of a non-natural amino acid and two compatible bioorthogonal chemistries, we conjugated mannitol dehydrogenase to formate dehydrogenase with the defined active site arrangement with the residue-level accuracy. The study revealed that the multienzyme complex with the active sites directed towards each other exhibits four-fold higher relative efficiency enhancement in the cascade reaction and produces 60% more D-mannitol than the other complex with active sites directed away from each other.ope
    corecore