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Abstract Somatostatin (SS) and dopamine (DA) receptors
are widely expressed in neuroendocrine tumours that cause
Cushing’s Syndrome (CS). Increasing knowledge of spe-
cific subtype expression within these tumours and the
ability to target these receptor subtypes with high-affinity
compounds, has driven the search for new SS- or DA-based
medical therapies for the various forms of CS. In Cushing’s
disease, corticotroph adenomas mainly express dopamine
receptor subtype 2 (D2) and somatostatin receptor subtype 5
(sst5), whereas sst2 is expressed at lower levels. Activation
of these receptors can inhibit ACTH-release in primary
cultured corticotroph adenomas and compounds that target
either sst5 (pasireotide, or SOM230) or D2 (cabergoline)
have shown significant efficacy in subsets of patients in
recent clinical studies. Combination therapy, either by
administration of both types of compounds separately or
by treatment with novel somatostatin–dopamine chimeric
molecules (e.g. BIM-23A760), appears to be a promising
approach in this respect. In selected cases of Ectopic
ACTH-producing Syndrome (EAS), the sst2-preferring
compound octreotide is able to reduce cortisol levels

effectively. A recent study showed that D2 receptors are
also significantly expressed in the majority of EAS and that
cabergoline may decrease cortisol levels in subsets of these
patients. In both normal adrenal tissue as well as in adrenal
adenomas and carcinomas that cause CS, sst and DA
receptor expression has been demonstrated. Although
selected cases of adrenal CS may benefit from sst or DA-
targeted treatment, its total contribution to the treatment of
these patients is likely to be low as surgery is effective in
most cases.
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1 Introduction

Cushing’s syndrome (CS) is a severe endocrine condition,
in which chronic systemic hypercortisolism leads to a
variety of signs and symptoms such as centripetal obesity,
peripheral muscle wasting, hypertension, diabetes mellitus,
osteoporosis and psychiatric disturbances [1]. In untreated
cases, morbidity and mortality rates are significantly
elevated compared to those in normal subjects [2]. Around
70% of endogenous cases of CS are due to a pituitary
ACTH-producing basophilic adenoma (Cushing’s disease,
CD), around 15% are due to an adrenal cortisol-producing
benign or malignant tumour and the remaining cases are
generally due to ectopic ACTH-secretion from a neuro-
endocrine tumour elsewhere in the body [3]. First-line
treatment of Cushing’s syndrome, regardless of its origin, is
usually surgery with the attempt to radically remove the
ACTH- or cortisol-producing tumour.

However, not all cases of CS are well managed by surgery
alone. For patients with CD it is known that long-term
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remission rates after transsphenoidal adenomectomy decrease
to 50–80% with longer follow-up time [4]. A second
transsphenoidal surgery in patients with a recurrence of CD
is known to have significantly lower success rates than the
primary surgery [5, 6]. Other treatment options for patients
with persistent or recurrent CD include conventional
radiotherapy or gamma knife surgery. Both are effective at
reducing ACTH hypersecretion in the majority of patients,
but have a slow onset of action, with an average time until
remission of 9–24 months [7]. In addition, radiotherapy is
accompanied by a significant risk of inducing secondary
pituitary dysfunction, cranial nerve damage or secondary
brain tumours [7–9]. As a definitive cure, patients with CD
can undergo bilateral adrenalectomy, but this does have
important implications in terms of lifelong dependence on
adrenal hormone replacement therapy and risk of future
Addison crises, while there is risk of the development of
Nelson’s syndrome.

Similarly, in some patients with the ectopic ACTH-
producing syndrome (EAS), the primary neuro-endocrine
tumour cannot be localized despite extensive radiological
and nuclear imaging, whereas in other EAS patients,
tumour resection can be irradical [10, 11]. Both types of
EAS patients will benefit from bilateral adrenalectomy but
with the same disadvantages as described above for CD.
Also, some patients with CS due to a malignant adrenal
tumour have advanced disease at the time of presentation
and in these cases complete removal of the cortisol-
producing adrenal tumour will not be possible.

For the above reasons there is a clear rationale behind
the search for an effective medical therapy for all causes of
CS. A great number of drugs that act at the level of the
pituitary, the adrenals or the glucocorticoid receptor itself,
have been evaluated in the past decades with generally
modest and variable results [12]. Most compounds either
show limited efficacy or are associated with serious toxicity
and adverse events. For instance, the steroidogenic inhibitor
ketoconazole has been shown to effectively decrease
cortisol levels in about 50% of patients [13], but often
causes considerable gastro-intestinal side effects and carries
a serious risk of medication-induced hepatitis, which limits
its use as a long-term monotherapy in CD patients [14].
Similarly, metyrapone can be effective in reducing cortisol
levels in patients with CS, but can cause hypertension and
hypokalemia. Blockade of the glucocorticoid receptor with
mifepristone (RU-486) can improve symptoms of CS, but
the absence of a suitable biochemical parameter to
monitor treatment efficacy makes dose titration difficult
and this can result in severe adrenal insufficiency in some
patients.

In recent years, however, research into medical therapies
for CS has also focussed on the use of both somatostatin (SS)
and dopamine (DA) agonists. These are regarded as neuro-

modulatory agents that can inhibit ACTH-hypersecretion at
the level of the pituitary. Important new insights in SS and
DA receptor physiology, combined with the recent avail-
ability of more selective SS and DA-agonists, have emerged
and are the topic of the current review.

2 Somatostatin and dopamine receptors

2.1 Somatostatin and dopamine receptors

Somatostatin (SS) is a 14 amino acid-long cyclic peptide
that is widely distributed throughout the human body. Its
functions vary from increasing gastro-intestinal motility to
neurotransmission within the central nervous system,
mediating immune responses and inhibition of hormone
release [15, 16]. SS exerts its functions by binding to all
five somatostatin receptor subtypes (sst1–5), which belong
to the family of G-protein coupled receptors (GPCRs) [17].
Dopamine (DA) is a catecholamine with an equally wide
range of functions including neurotransmission, control of
vascular tone, renal function and hormone secretion [18].
Also for DA receptors, five subtypes are known (D1–5) that
belong to the GPCR family, which are further classified
into D1-like (D1, D5) and D2-like (D2, D3, D4). D1-like
receptors generally mediate stimulatory functions, whereas
most D2-like receptors are associated with inhibition. Upon
binding of SS or DA to their respective receptors expressed
on the plasma membrane of target cells, multiple cellular
effector systems can be activated, which include inhibition
of Ca2+-influx, inhibition of adenylyl cyclase activity or
stimulation of phosphotyrosine phosphatases [17, 18]. Both
sst and DA receptors are abundantly expressed in the
human neuro-endocrine system and in the tumours that are
derived from it [19, 20]. Most of the in vivo functions of SS
and DA (D2-like) receptors are inhibitory and, therefore,
targeting these receptors with their natural agonists or
synthetically derived analogs has provided opportunities for
medical therapy of various neuro-endocrine disorders.

2.2 SS analogs and DA agonists

Soon after its discovery in 1972, somatostatin was known
to be a major regulator of GH release from the pituitary and
was therefore of interest for the potential treatment of
acromegaly [21]. One of the characteristics of native SS,
however, is its very short half-life in the circulation, which
is approximately 3 min [22]. For that reason, the production
of synthetic SS analogs with a significantly longer half-life,
was a major step forward in the treatment of this disorder.
The first stable SS-analog produced was Octreotide (SMS
201–995), which has a half life of approximately 120 min
after subcutaneous administration and was shown to reduce
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GH and IGF-1 levels in approximately two thirds of
acromegalic patients [23, 24].

Another important step in the development of SS
analogs was the discovery of the 5 somatostatin receptor
subtypes in the 1990s. These findings clarified indirectly
that the two available SS-analogs at the time, Octreotide
and its long-acting form Lanreotide, bind preferentially to
the sst2, but only modestly to sst5 or any of the other
subtypes. Native SS, on the other hand, binds with high
affinity to all of its receptors (sst1–5). In the subsequent
years, evidence grew that not all neuro-endocrine tumours
expressed receptor subtypes in a similar manner. Whereas
growth-hormone producing adenomas generally expressed
high levels of sst2, other adenomas, such as corticotroph
adenomas expressed considerably lower levels of sst2 (see
Fig. 1). The concept that different neuro-endocrine tumours
with important differences in sst expression profiles would
require specific sst-targeting analogs, sparked the interest
for the development of new types of SS-analogs that
displayed high affinity for one or more SS receptor
subtypes, see Table 1. One example of such a compound
is BIM-23244, which is a bispecific SS-analog with high
affinity for both sst2 and sst5. In GH-producing adenomas
that were only partially responsive to Octreotide, this novel
bispecific compound suppressed GH-production in vitro
significantly more effective than Octreotide, probably
through co-activation of sst5 receptors [25]. Another
example is Pasireotide (SOM230), which is a multi-ligand
SS-analog with high binding affinity for the sst1, sst2, sst3
and sst5 with IC50 values of 9.3, 1.0, 1.5 and 0.16 nM,
respectively, see Table 1 [26]. Its binding profile, which
includes high sst5-affinity, makes it a promising new drug
in the treatment of a number of neuro-endocrine tumours,
including CD (see below).

Dopamine agonists are an important class of drugs with
a broad range of therapeutic indications, including neuro-
logical disorders (Parkinson’s disease), cardiovascular
dysfunction and neuro-endocrine disorders. They can be
classified into either non-ergot (e.g. quinagolide) or ergot-
derived (e.g. bromocriptine, cabergoline, pergolide).
Bromocriptine has been known for many years to effec-
tively inhibit prolactin (PRL) release in the majority of
prolactinomas [27]. With increasing knowledge on DA
receptors, it also became evident that selectivity of
dopaminergic compounds for DA receptor subtypes was
of great importance for their overall efficacy and safety
profile. In comparison with bromocriptine, cabergoline has
a longer plasma half-life, binds with a higher affinity to
the D2 receptor, is better tolerated by patients and can
induce normalization in patients with hyperprolactinemia
that are proven to be resistant to bromocriptine therapy
[28]. The fulfilment of these criteria makes cabergoline
a promising drug for the treatment of a number of

neuro-endocrine disorders in which D2 expression plays
an imminent role.

2.3 Chimeric somatostatin–dopamine compounds

The fact that many neuro-endocrine cells co-express both
sst and DA receptors, has driven the hypothesis that these
receptors may work synergistically. In 2000, Rocheville et
al. [29] published an important paper on the functional
heterodimerization of sst5 and D2 receptors in stably
transfected CHO-K1 cells, which resulted in overall
enhanced biological potency. Based on these observations,
new chimeric molecules have been synthesized that contain
structural elements of both SS and DA compounds and
therefore bind with high affinity to both sst and DA
receptor subtypes. By binding to the two different recep-
tors, these hybrid molecules may draw the receptors
together in a spatial manner. This can lead to enhanced
potency of the chimeric compound, compared to activation
by two separate DA or SS analogs [30].

3 Cushing’s disease (CD)

3.1 Somatostatin analogs in Cushing’s disease

3.1.1 Sst expression in normal corticotroph cells

Whereas the role of hypothalamic SS as a principal regulator
of pituitary GH-release has been firmly established [31], the
effect of SS on ACTH release by the anterior pituitary
gland has been less clear. Rat pituitary corticotrophs are
known to express multiple sst, including sst2 and sst5 [32–
34], but treatment of cultured rat corticotrophs with SS-14
does not result in inhibition of ACTH-release [35, 36]. On
the other hand, when rat pituitary cells are cultured in
glucocorticoid-free media, SS-14 is able to decrease
ACTH-release [37]. In agreement with these findings,
infusion of SS-14 or Octreotide does not alter ACTH-
release in normal subjects [38–41], whereas both of these
compounds can acutely decrease plasma ACTH levels in
conditions of hypocortisolemia such as untreated Addison
disease [42]. These observations suggest that the presence
of glucocorticoids reduces the inhibitory effects of native
somatostatin and traditional SS analogs on ACTH release.

3.1.2 In vitro studies with SS-analogs in corticotroph cell
lines and adenomas

The only available ACTH producing cell line from
corticotroph origin is the murine AtT20 cell line. A number
of studies have indicated that in these cells sst2 and sst5 are
principally involved in regulation of ACTH release and that
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selective agonists that target these subtypes effectively
inhibit ACTH secretion [43–47]. More recently it was
found that especially sst5 played a crucial role in regulating
ACTH release in these cells and that sst5-targeting
agonists were more effective than sst2-agonists in inhibiting
ACTH release [48]. Interestingly, pre-incubation with
dexamethasone decreased the expression of sst2 in these
cells, but not of sst5, and in line with these findings

Octreotide, but not Pasireotide, lost most of its ACTH
inhibiting potential after glucocorticoid pre-treatment [48].
These data are in line with the original observations that
glucocorticoids downregulate the total number of SS
binding sites in cultured pituitary cells [49]. Evidence for
abrogation of sst2-mediated effects by glucocorticoids
has also been provided by Stalla et al. [50]. They found
that Octreotide decreased ACTH levels in corticotroph
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Fig. 1 Overview of sst expres-
sion in seven GH-producing
(somatotroph) and six ACTH-
producing (corticotroph) human
pituitary adenomas. Note the
difference in scale of the y-axis
between sst1–3 and sst5.
Somatotroph adenomas have
abundant expression of both sst2
and sst5 (left column), whereas
corticotroph adenomas express
sst5 at similar levels but have a
significantly lower expression of
sst2 (right column). Values are
expressed as copy numbers
relative to that of the reference
gene hprt. N.d. Not detectable
(Adapted from [51, 115])

94 Rev Endocr Metab Disord (2009) 10:91–102



adenomas in vitro, but not in CD patients in vivo. How-
ever, when these corticotroph adenoma cells in vitro were
pre-treated with the glucocorticoid hydrocortisone, the
ACTH inhibiting effects of Octreotide were abolished in
one of the cultures. Given the generalized state of hyper-
cortisolism in CD patients and the relative resistance of sst5 to
glucocorticoid-induced down-regulation compared to sst2,
SS-analogs with high sst5 affinity are of great interest in the
development of new medical therapies for CD.

In 2005 and 2006, two studies were published that inde-
pendently investigated sst expression in human corticotroph
adenoma tissues, obtained at the time of transsphenoidal
surgery. In the first study, Hofland et al. [51] showed by
quantitative PCR that sst5 was highly expressed in 6/6
adenomas, whereas sst1,2,3,4 were expressed at much lower
levels. In concordance with this, functional studies in five
additional adenomas demonstrated overall superior ACTH
inhibition by Pasireotide (10 nM) compared to Octreotide
(10 nM) after 72 h.

In the second study, Batista et al. reported on a series of
13 corticotroph adenomas derived from both adult (n=7) and
pediatric (n=6) CD patients [52]. In this study, quantitative
PCR demonstrated the expression of subtypes 1, 2, 4 and 5
in these adenomas, while at immunohistochemistry expres-
sion of all subtypes was found. Both of these methods
showed the highest expression of the sst5 subtype. Six of the
adenomas were cultured in vitro and treated with Pasireotide.
In 6/6 adenomas Pasireotide significantly decreased cellular
proliferation rates (range 10–70%) as measured by uptake of
fluorescent vital stain and in 5/6 a significant decrease in
ACTH production was observed (range 23–56%) at doses of
1 to 10 nM after 48–96 h. Furthermore, a dissociation was
seen in some of the adenomas between the anti-secretory and
anti-proliferative effects of Pasireotide, similarly to what has
been described previously for GH-producing adenomas in
response to SS-analog treatment [53].

3.1.3 Clinical studies with SS-analogs in CD

Early studies showed that in patients with CD, Octreotide is
not able to effectively reduce ACTH secretion and hence
cortisol levels [50, 54, 55]. In contrast, several smaller
studies and case reports found that patients with Nelson
syndrome, i.e. an expanding ACTH-producing pituitary
adenoma after bilateral adrenalectomy, did respond to
Octreotide with reductions in ACTH [54, 56–58]. This
difference is readily explained by the differences in average
circulating cortisol levels in both disease states and the
effects of glucocorticoid-induced down-regulation of sst2
receptors, as mentioned earlier [59].

Since then, few clinical studies have been reported that
examined SS-analog therapy in CD, until some important
new insights developed. It was foremost the discovery that
sst5 was highly expressed in the majority of human
corticotroph adenomas, which made the novel multi-ligand
SS-analog Pasireotide an interesting compound to evaluate
in patients with CD, due to its subnanomolar sst5-affinity. A
phase II multi-center clinical study was performed in 21
patients with de novo or recurrent CD [60]. Patients were
treated with SOM230 600 μg twice daily over a 15-day
period. Primary endpoint was normalization of 24-h urinary
free cortisol (UFC) levels. Preliminary results of this study
showed that out of 21 included patients, four (19%) obtained
complete UFC normalization and another five (24%) had a
significant decrease in UFC. Overall, Pasireotide was well
tolerated in the 2×600 μg dose, except for some mild gastro-
intestinal side effects such as nausea, abdominal pain and
loose stools or diarrhoea. A major side effect of Pasireotide,
however, which was already known from previous studies in
acromegalic patients, was an overall increase in blood
glucose levels. Worsening of glycaemic control was ob-
served in almost all participating patients in this study, but
was often a transient effect. In some cases, however, the use

Table 1 Binding affinities (IC50) of SS-analogs and DA-agonists mentioned in this review

Compound sst1 sst2 sst3 sst4 sst5 D2Short D2Long D4

SS-analogs
Somatostatin (SS-14) 0.93 0.15 0.56 1.50 0.29
Octreotide 280 0.38 7.10 >1,000 6.30
Pasireotide (SOM230) 9.3 1.0 1.5 >1,000 0.16
BIM-23244 >1000 0.3 133 >1,000 0.7

Dopamine agonists
Dopamine 350 320 100
Bromocriptine 4.5 3.9 >1000
Cabergoline 0.53 0.41 81

Dopastatin chimeras
BIM-23A760 622 0.03 160 >1,000 42 15a

References: SS-binding data [26, 112], DA-binding data [113], BIM-analog binding data [25, 114]
a IC50 for D2 receptor (both short and long isoform)
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of subcutaneous insulin administration was required and in
one case the study drug was withdrawn.

Based on the current data, Pasireotide appears to be a
potent cortisol-lowering drug in almost half of CD patients
and is well tolerated. A major advantage of Pasireotide
compared to Octreotide is its longer plasma half-life in the
circulation, approximately 12 versus 2 h [61]. Pasireotide
treatment does carry the risk of significant hyperglycemia,
however, in a substantial number of patients. A new
challenge would be to identify subgroups of CD patients
who are likely to benefit from sst5-mediated (Pasireotide)
therapy and at the same time do not suffer excessively from
increases in blood glucose levels.

Another potential problem might be any direct effects of
Pasireotide therapy on GH and IGF-1evels in CD patients.
It is well known that Pasireotide, via sst5 receptor
activation, directly decreases GH release and hence IGF-1
levels in patients with acromegaly. Whether this also occurs
in normal subjects without GH/IGF-1 axis overactivation,
has not been reported. Normal somatotrophs, however,
express sst5 in significant numbers and in normal rats,
primates and dogs Pasireotide has been shown to signifi-
cantly decrease GH and IGF-1 levels [62]. In patients with
CD, sustained hypercortisolism by itself causes a state of
relative growth-hormone deficiency and therefore these
patients may be at greater risk to become GH-deficient.
Current and future clinical studies with Pasireotide in CD
patients should therefore include careful investigation of the
effects on the GH/IGF-1 axis.

3.2 Dopamine agonists in Cushing’s disease

3.2.1 DA receptor expression in normal corticotrophs

In humans, no firm data exist whether or not ACTH release is
directly regulated by DA receptors in normal corticotroph
cells. In rats it is known that the intermediate lobe in the
pituitary is under tonic inhibitory control from dopaminergic
neurons from the hypothalamus [63–65]. The predominant
cell type in the intermediate lobe is the melanotroph, which
produces pro-opiomelanocortin (POMC). In the intermediate
lobe POMC is processed into α-melanocyte stimulating
hormone (α-MSH) and corticotropin-like intermediate lobe
peptide (CLIP). This is different from the POMC-processing
in anterior corticotroph cells, which mainly results in ACTH.
The tonic inhibition by hypothalamic dopamine is thought to
be exerted through D2 receptors. This is demonstrated by the
fact that D2-deficient mice develop intermediate lobe
hypertrophy with increased POMC expression, elevated
ACTH and corticosterone levels, resulting in adrenal gland
hypertrophy [66]. In humans, the intermediate lobe in the
pituitary is a rudimentary structure, but is still thought to
contain important biological functions. Human corticotroph

adenomas arising from the intermediate lobe may have
different characteristics than those arising from the anterior
lobe, although much controversy exists around this subject
[67, 68].

3.2.2 In vitro studies with DA agonists in corticotroph cell
lines and adenomas

Two reports have been published on the use of dopamine
agonists in the murine corticotroph cell line AtT20, but these
have produced conflicting results. Farrell et al. found that
treatment with the dopamine agonist bromocriptine did not
reduce POMC mRNA expression in these cells, whereas Yin
et al. did show that bromocriptine inhibited proliferation of
these cells with induction of apoptosis [69, 70]. The observed
difference may be due to the fact that in the second study
treatment with bromocriptine was significantly longer than in
the first study (72 vs. 24 h, respectively).

In 2004, Pivonello et al. [71] investigated DA receptor
expression in a series of 20 human corticotroph adenomas.
They showed that the majority (80%) of these adenomas
express the D2 receptor as demonstrated by immunohisto-
chemistry (IHC), receptor-ligand binding and RT-PCR. Of
these D2-positive adenomas, approximately 40% expressed
the D2 long isoform, 20% D2 short and 40% expressed
both isoforms. D4 was expressed in 20% of cases, whereas
D1, D3 and D5 expression was not observed. Functional
studies in vitro correlated very well with the D2 expression
data: adenomas high in D2 expression responded well to
either bromocriptine or cabergoline therapy with inhibi-
tion of ACTH release by 43% to 60%, whereas D2-
negative adenomas failed to respond. The D2- expression
data reported in this study are similar to those described
by an earlier paper, where 11/16 (69%) of corticotroph
adenomas, both functional and silent, expressed D2

receptors as demonstrated by in situ hybridisation and
immunohistochemistry [72].

3.2.3 Clinical studies with DA agonists in CD

The DA agonist bromocriptine has been widely evaluated
for its potential use in human corticotroph adenomas.
Overall, results of these studies have been variable.
Although initial reductions in ACTH levels are evident in
almost half of CD patients in response to bromocriptine
administration, these reductions are often minor and
sustained responses to bromocriptine therapy occur only
in a small percentage of patients [73]. Some studies have
suggested that corticotroph adenomas arising from the
intermediate lobe may be more likely to respond to
bromocriptine [74].

Compared to bromocriptine, cabergoline binds with even
higher specificity and affinity to D2-receptors and has a
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longer duration of action [28]. Over the past decade,
various case reports have demonstrated that ACTH-
producing adenomas can be highly responsive to cabergo-
line therapy, both in patients with CD as well as in Nelson’s
syndrome [71, 75–83], see Table 2. In some of these cases
shrinkage of the corticotroph adenoma was observed on
MRI [75–78, 82]. In the previously mentioned study by
Pivonello et al., 20 patients with CD were treated with
cabergoline at a dose of 1–3 mg/week for 3 months [71].
This resulted in a significant decrease in urinary free
cortisol (UFC) in 60% of patients and even complete
UFC normalization in 40% of them. Interestingly, there was
a very good correlation between the in vitro findings on D2

receptor expression and the responses to cabergoline
therapy in vivo. All D2-expressing adenomas showed
decreased cortisol levels in vivo in response to cabergoline
therapy, whereas D2-negative cases did not. Preliminary
data from another research group showed similar in vivo
response rates after 20 months of cabergoline therapy [82].
In this study 3/8 CD patients (37.5%) had a complete
normalization of 24 h UFC, 3/8 (37.5%) had a partial
response (UFC≤1.25×ULN), whereas the remaining two
patients did not respond. In both studies, cabergoline
therapy was generally well tolerated. Despite the con-
vincing results from both studies, the duration of treatment
is still relatively short. For a genuine assessment of the utility
of the drug cabergoline as a medical treatment for CD,
studies on its efficacy and safety when used on a long-term
basis in larger groups of patients are much needed. These
studies are currently ongoing and some preliminary results
indicate sustained efficacy after 1–2 years of follow-up [83].

One important issue that recently has dominated the field
of medical therapy with DA-agonists has been the possible
association between valvular heart disease and long-term
therapy with the ergot-derived dopamine agonists (EDDA)

pergolide and cabergoline. Two important papers were
published in early 2007, which reported significantly
increased risks (RR, 4.6–7.3) of valvular regurgitation in
patients with idiopathic Parkinson’s disease that had
received chronic treatment with either one of these drugs
[84, 85]. Other studies have recently confirmed these data
[86]. The pathogenetic mechanism behind this deleterious
side effect is thought to be the binding of EDDA to 5-HT2B
receptors expressed in the endocardial tissue of heart valves
[85].

These findings have led to a number of important actions,
including the withdrawal of pergolide from the US market.
The impact of these studies on the (future) use of cabergoline
in patients with CD cannot be fully determined yet, as one
important issue needs to be emphasized. The maximum dose
of cabergoline prescribed in CD is around 0.65 mg per day
(4.5 mg/week), whereas the patients with Parkinson’s
disease in the study by Zanettini et al. [85] received an
average daily dose of 3.6 mg/day. In the other study by
Schade et al. [84], an important risk difference was found
between patients taking >3 mg cabergoline daily for more
than 6 months (RR 50.3, 95% CI 6.6–381.4) compared to
those who took less than 3 mg daily (RR 2.6; 95% CI 0.5–
12.8). Therefore, these observations in Parkinson’s disease
patients can not be directly extrapolated towards lower-dose
cabergoline therapy in CD. Monitoring of cardiac function
in CD patients on long-term cabergoline therapy does seem
to be a prerequisite, however.

3.2.4 Combined treatment with SS and DA agonists in CD

Due to the reported presence of both sst and DA receptors
in human corticotroph adenomas and the fact that both
receptor types can inhibit ACTH production in vitro, the
concept of a combination therapy with both SS-analogs and

Table 2 Overview studies on cabergoline use in ACTH-producing pituitary adenomas (CD and Nelson)

Year First author (ref) No. of
patients

Type Macro-
adenoma

Dose
(mg/wk)

Duration
(months)

Shrinkage
observed

Remarks

1999 Pivonello [75] 1 Nelson no 1–2 12 yes Normalization ACTH
2001 Petrossians [76] 1 Silent CD yes 1.75 24 yes Restored cranial nerve function
2004 Miyoshi [77] 1 CD yes 0.25–0.5 6 yes Decreased ACTH
2004 Casulari [78] 1 Nelson yes 1.0 48 yes Normalization ACTH
2004 Pivonello [71] 20 CD 5/20 1–3 3 n.e. 40% full+20% partial UFC response
2006 Shraga-Slutzky [79] 1 Nelson yes 1.5–2 72 no Decreased ACTH (−90%)
2006 Illouz [80] 3 CD no 1–3 1–9 no Normalization UFC in 2/3 patients
2007 Garcia [81] 1 Nelson no 2 42 n.e. Decreased ACTH
2007 Godbout [82] 8 CD n.m. 0.75–3.0 20–28 yes 38% full+38% partial UFC response
2007 Pivonello [83] 15 CD n.m. 1–7 3–24 n.e. Sustained remission in 10/15

patients after 12–24 months

n.e. Not evaluated, n.m. not mentioned
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DA-agonists in CD seems to be a feasible approach [87].
These studies could be performed by co-treatment with
individual SS-analogs and DA-agonists (pasireotide+
cabergoline) or perhaps, in the near future, by administra-
tion of SS-DA-chimeric compounds such as BIM-23A760,
which displays high affinity for sst2, D2 and to a lesser
extent sst5 (see Table 1). If functional heterodimerization of
these receptor subtypes occurs in vivo, as has already been
shown to occur in vitro by different groups, this type of
treatment could result in greatly enhanced efficacy of these
compounds [29]. Also, as corticotroph adenomas can differ
considerably in the total number of sst and D2 receptors
they express [51, 52, 71], targeting of multiple receptors
could increase the overall response rate in this group as a
whole, compared to the use of individual SS or DA
agonists. This has already been shown for GH-producing
adenomas, where BIM-23A760 had overall superior effi-
cacy compared to individual sst2, sst5 or D2-targeting
agonists in terms of in vitro GH inhibition [88, 89]. As it
is known that also in CD only subsets of patients have
responded to either cabergoline or pasireotide monotherapy
in vivo, it may well be that similar phenomena occur in
corticotroph adenomas and that combination therapy can
increase overall response rates. Until now, no studies have
been published that have investigated this hypothesis.

Theoretically, co-treatment with sst and DA agonists
may have other advantages as well. As stated before, the
inefficacy of sst2-preferring compounds in CD, is probably
due to down-regulation of sst2-expression by high levels of
circulating glucocorticoids [48, 50, 51]. Inversely, if
combined treatment with these analogs is effective and
thus lowers cortisol levels in these patients, this could result
in a return of sst2 expression. The latter would result in
enhanced efficacy of SS-analogs with sst2-affinity and
hence strongly increase pharmacotherapeutical options in
these patients [59, 90].

4 Ectopic ACTH-producing syndrome (EAS)

4.1 Somatostatin analogs

For some decades it has been known that neuro-
endocrine tumours that cause ectopic ACTH-producing
syndrome (EAS), such as bronchial carcinoids or small
cell lung cancer (SCLC), often express functional SS
receptors. A number of smaller studies and case reports
have been published on the use of Octreotide in patients
with EAS. Interestingly, Octreotide was efficacious in
lowering cortisol levels in a significant number of these
patients, as opposed to the studies performed in patients
with CD [91–94]. This discrepancy is further confirmed
by the fact that many patients with EAS have positive

lesions on 111In-pentereotide scan (Octreoscan), whereas
most patients with CD do not [95]. The observation that
many of the EAS producing neuro-endocrine tumours
have functional sst2 receptors, despite the chronic hyper-
cortisolism they are exposed to, could be explained by
aberrant glucocorticoid receptor signalling in these tumour
cells. This has been investigated extensively by a number
of research groups over the past twenty years. It was found
that many of the cell lines, derived from EAS producing
small-cell lung carcinomas, carry gross mutations in the
genetic sequence of the glucocorticoid receptor (GR) [96,
97]. These can be located either in the DNA-binding or the
ligand-binding domain, but can also involve a number of
transcription factors. The loss of function of the GR has
important impact on POMC production in these cells. Any
form of negative feedback is generally lost in these cells,
leading to excessive and uninhibited production of POMC
and ultimately, the full clinical spectrum of Cushing’s
Syndrome. Another result of aberrant GR functioning,
may be that glucocorticoid-induced down-regulation of
somatostatin receptor subtype 2 (sst2) does not occur in these
tumours, as opposed to pituitary-derived corticotroph adeno-
mas. This could well explain the relatively high degree of
positive Octreoscans and reported efficacy of Octreotide in
this group of neuro-endocrine tumours [98, 99].

One main concern with the use of SS analogs in EAS,
however, appears to be the long-term control of hyper-
cortisolism. Although initial responses to Octreotide are
frequent, these are not always sustained and treatment
escapes are commonly encountered, due to a number of
possible mechanisms of tachyphylaxis [100].

4.2 Dopamine agonists

Farrell et al. [69] showed in 1992 that the dopamine agonist
bromocriptine could effectively inhibit POMC mRNA and
ACTH precursor secretion in a small cell lung cancer cell
line (CORL103), that is known to cause EAS. After these
initial observations, to our knowledge no (clinical) studies
have been performed that investigated the potential use of
DA compounds in EAS, until a recent study by Pivonello et
al. [101]. In this study, six patients with EAS-causing
carcinoid tumours (four lung, one thymic, one pancreatic)
underwent surgery. Five out of these 6 resected EAS
tumours expressed D2, as determined by IHC. Three
patients had persistent EAS after surgery and were treated
with cabergoline at 3.5 mg/week for 6 months. All three
patients had measurable D2 mRNA and two out of three
had D4 mRNA expression on RT-PCR. Two patients had
complete normalization of UFC after 3 months of cabergo-
line treatment, although one of them had a treatment escape
afterwards. Of note, the long-term responder had the
strongest overall D2 expression, including the D2 short
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isoform, and was also D4-receptor positive. In other
pituitary tumours this expression profile has been asso-
ciated with a good response to cabergoline therapy [71,
102]. Despite the small size of this study, it is probable that
at least a subgroup of EAS patients could benefit from D2-
targeted treatment, but obviously these results need to be
confirmed in larger series.

4.3 Somatostatin–dopamine chimeras

Another interesting development in EAS tumours is the
evaluation of dopamine-somatostatin chimeric molecules.
Ferone et al. [30] examined the effects of the chimeras
BIM-23A370 and BIM-23A387 in the non-small cell lung
cancer cell line CALU-6. It was found that in these cells
that natively express both sst2 and D2 receptors at high
levels, the chimeric compounds had a stronger direct
inhibitory effect on cell proliferation than the SS and DA-
selective compounds alone. These data clearly confirm the
hypothesis of heterodimerization between these two recep-
tors, as had been suggested before by other groups [29].

A recent case report provides some further clinical
evidence for this potential synergism between sst and DA
receptors in EAS. In this case, a man with EAS due to a
lung carcinoid tumour was treated medically after incom-
plete surgical removal. Cortisol levels normalized only
temporarily with either SS-analog (Lanreotide) or dopamine
agonist (Cabergoline) therapy alone. However, when both
drugs were given simultaneously, based on co-expression of
sst5 and D2 that was demonstrated by RT-PCR on the
resected tumour specimen, the patient came into complete
and prolonged remission [103].

5 Adrenal Cushing’s syndrome

Immunohistochemical and RT-PCR studies have shown that
all sst subtypes (1–5) are expressed in the majority of
normal adrenal cortices as well as in most cortisol-
producing adenomas [104–106]. Interestingly, immuno-
staining occurred only in a minority (<30%) of these
adenoma cells. One of the studies described a remarkably
high expression of sst4 in the adenomas [104], but this was
not found in another study [105]. To our knowledge, no
studies have been performed so far to evaluate SS-analog
therapy in cortisol-producing adenomas and carcinomas in
vitro. In terms of clinical studies, octreotide does not appear
to be effective in cases of adrenal carcinomas [107].

DA receptors (D1 and D2-like) are abundantly expressed
in normal human adrenal cortex, where they are involved in
the regulation of aldosterone release, but also in cortisol
and androgen production [108, 109]. Their presence has
been clearly established in different types of adrenal

adenomas and carcinomas, some of which cause CS [110,
111]. D2 and D4 receptor subtypes were found in the
cortisol-producing adrenal adenomas and carcinomas by
RT-PCR. The adenomas expressed both D2 isoforms (short
and long), whereas the carcinomas only expressed the D2-
long isoform. Functional studies showed that the D2-agonist
cabergoline was able to modulate ACTH- and angiotensin
II-stimulated aldosterone release [111].

Taken together, despite the abundant expression of both
SS and DA receptors in both the normal and the abnormal
human adrenal gland, there are currently no data that would
strongly support the use of SS-analog or DA-agonist therapy
in patients with adrenal adenomas or carcinomas that cause
CS. Given the high degree of surgical cure that can be
obtained in most of these patients, the contribution of SS and
DA-agonist therapy in this patient group is likely to be low.

6 Summary

In all forms of Cushing’s syndrome (pituitary, ectopic and
adrenal CS) a subset of patients cannot be cured by surgery
alone and therefore requires effective adjuvant treatment.
Medical therapy can offer important advantages over other
secondary treatments such as radiotherapy and bilateral
adrenalectomy, including a relatively rapid onset of action
and the fact that integrity of the HPA-axis is maintained. In
CD, sst5 and D2 receptors play a crucial in the regulation of
ACTH-release from corticotroph adenoma cells both in
vitro and in vivo. Agents that selectively target these
receptors can significantly reduce urinary cortisol excretion
in subsets of patients. Combined treatment with these
agents could in theory result in increased overall response
rates, but these studies still need to be performed. In
selected cases of ectopic ACTH-producing syndrome, D2-
agonists are shown to be effective in reducing cortisol
production, either alone or in combination with SS-analogs.
Tumours that cause adrenal CS do express SS and DA
receptors, but there is only limited data on the efficacy of
agents that target these receptors neither in vitro nor in vivo.
Their overall contribution to the management of these
patients is likely to be low.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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