405 research outputs found

    Impact of digestive and oropharyngeal decontamination on the intestinal microbiota in ICU patients

    Get PDF
    Selective digestive microbial decontamination (SDD) is hypothesized to benefit patients in intensive care (ICU) by suppressing Gram-negative potential pathogens from the colon without affecting the anaerobic intestinal microbiota. The purpose of this study was to provide more insight to the effects of digestive tract and oropharyngeal decontamination on the intestinal microbiota by means of a prospective clinical trial in which faecal samples were collected from ICU patients for intestinal microbiota analysis. The faecal samples were collected from ICU patients enrolled in a multicentre trial to study the outcome of SDD and selective oral decontamination (SOD) in comparison with standard care (SC). Fluorescent in situ hybridization (FISH) was used to analyze the faecal microbiota. The numbers of bacteria from different bacterial groups were compared between the three regimens. The total counts of bacteria per gram faeces did not differ between regimens. The F. prausnitzii group of bacteria, representing an important group among intestinal microbiota, was significantly reduced in the SDD regimen compared to the SC and SOD. The Enterobacteriaceae were significantly suppressed during SDD compared to both SOD and SC; enterococci increased in SDD compared to both other regimens. The composition of the intestinal microbiota is importantly affected by SDD. The F. prausnitzii group was significantly suppressed during SDD. This group of microbiota is a predominant producer of butyrate, the main energy source for colonocytes. Reduction of this microbiota is an important trade-off while reducing gram-negative bacteria by SDD

    Serum sex hormone-binding globulin levels are reduced and inversely associated with intrahepatic lipid content and saturated fatty acid fraction in adult patients with glycogen storage disease type 1a

    Get PDF
    PURPOSE: De novo lipogenesis has been inversely associated with serum sex hormone-binding globulin (SHBG) levels. However, the directionality of this association has remained uncertain. We, therefore, studied individuals with glycogen storage disease type 1a (GSD1a), who are characterized by a genetic defect in glucose-6-phosphatase resulting in increased rates of de novo lipogenesis, to assess the downstream effect on serum SHBG levels. METHODS: A case-control study comparing serum SHBG levels in patients with GSD1a (n = 10) and controls matched for age, sex, and BMI (n = 10). Intrahepatic lipid content and saturated fatty acid fraction were quantified by proton magnetic resonance spectroscopy. RESULTS: Serum SHBG levels were statistically significantly lower in patients with GSD1a compared to the controls (p = 0.041), while intrahepatic lipid content and intrahepatic saturated fatty acid fraction-a marker of de novo lipogenesis-were significantly higher in patients with GSD1a (p = 0.001 and p = 0.019, respectively). In addition, there was a statistically significant, inverse association of intrahepatic lipid content and saturated fatty acid fraction with serum SHBG levels in patients and controls combined (β: - 0.28, 95% CI: - 0.47;- 0.09 and β: - 0.02, 95% CI: - 0.04;- 0.01, respectively). CONCLUSION: Patients with GSD1a, who are characterized by genetically determined higher rates of de novo lipogenesis, have lower serum SHBG levels than controls

    Assessment of animal African trypanosomiasis (AAT) vulnerability in cattle-owning communities of sub-Saharan Africa

    Get PDF
    Background: Animal African trypanosomiasis (AAT) is one of the biggest constraints to livestock production and a threat to food security in sub-Saharan Africa. In order to optimise the allocation of resources for AAT control, decision makers need to target geographic areas where control programmes are most likely to be successful and sustainable and select control methods that will maximise the benefits obtained from resources invested. Methods: The overall approach to classifying cattle-owning communities in terms of AAT vulnerability was based on the selection of key variables collected through field surveys in five sub-Saharan Africa countries followed by a formal Multiple Correspondence Analysis (MCA) to identify factors explaining the variations between areas. To categorise the communities in terms of AAT vulnerability profiles, Hierarchical Cluster Analysis (HCA) was performed. Results: Three clusters of community vulnerability profiles were identified based on farmers’ beliefs with respect to trypanosomiasis control within the five countries studied. Cluster 1 communities, mainly identified in Cameroon, reported constant AAT burden, had large trypanosensitive (average herd size = 57) communal grazing cattle herds. Livestock (cattle and small ruminants) were reportedly the primary source of income in the majority of these cattle-owning households (87.0 %). Cluster 2 communities identified mainly in Burkina Faso and Zambia, with some Ethiopian communities had moderate herd sizes (average = 16) and some trypanotolerant breeds (31.7 %) practicing communal grazing. In these communities there were some concerns regarding the development of trypanocide resistance. Crops were the primary income source while communities in this cluster incurred some financial losses due to diminished draft power. The third cluster contained mainly Ugandan and Ethiopian communities which were mixed farmers with smaller herd sizes (average = 8). The costs spent diagnosing and treating AAT were moderate here. Conclusions: Understanding how cattle-owners are affected by AAT and their efforts to manage the disease is critical to the design of suitable locally-adapted control programmes. It is expected that the results could inform priority setting and the development of tailored recommendations for AAT control strategies

    Relationship between de novo lipogenesis and serum sex hormone binding globulin in humans

    Get PDF
    Objective Obesity and liver fat are associated with decreased levels of serum sex hormone binding globulin (SHBG). Laboratory studies suggest that hepatic de novo lipogenesis (DNL) is involved in the downregulation of SHBG synthesis. The aim of the present study was to address the role of DNL on serum SHBG in humans. Design A cross-sectional study examining the association between DNL, measured by stable isotopes, and serum SHBG, stratified by sex. Participants Healthy men (n = 34) and women (n = 21) were combined from two cross-sectional studies. Forty-two per cent of participants had hepatic steatosis, and the majority were overweight (62%) or obese (27%). Results DNL was inversely associated with SHBG in women (beta: -0.015, 95% CI: -0.030; 0.000), but not in men (beta: 0.007, 95% CI: -0.005; 0.019) (p for interaction = .068). Adjustment for study population, age and body mass index did not materially change these results, although statistical significance was lost after adjustment for serum insulin. Conclusions An inverse association between DNL and SHBG may explain the decreased SHBG levels that are observed in obesity, at least in women.Peer reviewe

    Like Will to Like: Abundances of Closely Related Species Can Predict Susceptibility to Intestinal Colonization by Pathogenic and Commensal Bacteria

    Get PDF
    The intestinal ecosystem is formed by a complex, yet highly characteristic microbial community. The parameters defining whether this community permits invasion of a new bacterial species are unclear. In particular, inhibition of enteropathogen infection by the gut microbiota ( = colonization resistance) is poorly understood. To analyze the mechanisms of microbiota-mediated protection from Salmonella enterica induced enterocolitis, we used a mouse infection model and large scale high-throughput pyrosequencing. In contrast to conventional mice (CON), mice with a gut microbiota of low complexity (LCM) were highly susceptible to S. enterica induced colonization and enterocolitis. Colonization resistance was partially restored in LCM-animals by co-housing with conventional mice for 21 days (LCMcon21). 16S rRNA sequence analysis comparing LCM, LCMcon21 and CON gut microbiota revealed that gut microbiota complexity increased upon conventionalization and correlated with increased resistance to S. enterica infection. Comparative microbiota analysis of mice with varying degrees of colonization resistance allowed us to identify intestinal ecosystem characteristics associated with susceptibility to S. enterica infection. Moreover, this system enabled us to gain further insights into the general principles of gut ecosystem invasion by non-pathogenic, commensal bacteria. Mice harboring high commensal E. coli densities were more susceptible to S. enterica induced gut inflammation. Similarly, mice with high titers of Lactobacilli were more efficiently colonized by a commensal Lactobacillus reuteri RR strain after oral inoculation. Upon examination of 16S rRNA sequence data from 9 CON mice we found that closely related phylotypes generally display significantly correlated abundances (co-occurrence), more so than distantly related phylotypes. Thus, in essence, the presence of closely related species can increase the chance of invasion of newly incoming species into the gut ecosystem. We provide evidence that this principle might be of general validity for invasion of bacteria in preformed gut ecosystems. This might be of relevance for human enteropathogen infections as well as therapeutic use of probiotic commensal bacteria
    corecore