111,010 research outputs found
Technique for producing bipolar and MOS field effect transistors on a single chip
Several cycles of photoetching, dopant deposition, and drive-in produce selectively-doped regions and semiconductor junctions within a single chip
Carbon Monoxide Exposure and Human Health
The primary objective of this report is to provide detailed information
on the health effects of carbon monoxide. With this information, the community
can judge for itself what action is deemed necessary to maintain or
improve the health of its residents
Visible spectral power emitted from a laser produced uranium plasma
The development of plasma-core nuclear reactors for advanced terrestrial and space-power sources is researched. Experimental measurements of the intensity and the spectral distribution of radiation from a nonfissioning uranium plasma are reported
Coupling of phonons to a helium atom adsorbed on graphite
We compute the self-energy for a ^4He atom adsorbed on graphite to second order in the phonon coupling. The phonon contributions amount to several degrees Kelvin. The imaginary part corresponds to a lifetime of some 10^(-11) s
Study of foldable elastic tubes for large space structure applications, phase 1
Structural members that might be suitable for strain energy deployable structures, are discussed with emphasis on a thin-walled cylindrical tube with a cross-section that is called 'bi-convex'. The design of bi-convex tube test specimens and their fabrication are described as well as the design and construction of a special purpose testing machine to determine the deployment characteristics. The results of the first series of tests were quite mixed, but clearly revealed that since most of the specimens failed to deploy completely, due to a buckling problem, this type of tube requires some modification in order to be viable
The excitation of O2 in auroras
Newly measured electron impact cross sections for excitation of the a 1 Delta g and b 1 Sigma g+ electronic states of O2 were employed to predict the absolute volume emission rates from these states under auroral conditions. A secondary electron electron flux typical of an IBC II nighttime aurora was used and the most important quenching processes were included in the calculations. The new excitation cross sections for the a 1 Delta g and b 1 Sigma g+ states are more than an order of magnitude larger than previous estimates, and lead to correspondingly greater intensities in the atmospheric and IR-atmospheric band systems. The calculated intensity ratios of the volume emission rates of 7621 A and 1.27 microns to that for 3914 A are smaller than obtained from aircraft observations and recent rocket experiments
Magnetocaloric effect in Gd/W thin film heterostructures
In an effort to understand the impact of nanostructuring on the
magnetocaloric effect, we have grown and studied gadolinium in MgO/W(50
)/[Gd(400 )/W(50 )]
heterostructures. The entropy change associated with the second order magnetic
phase transition was determined from the isothermal magnetization for numerous
temperatures and the appropriate Maxwell relation. The entropy change peaks at
a temperature of 284 K with a value of approximately 3.4 J/kg-K for a 0-30 kOe
field change; the full width at half max of the entropy change peak is about 70
K, which is significantly wider than that of bulk Gd under similar conditions.
The relative cooling power of this nanoscale system is about 240 J/kg, somewhat
lower than that of bulk Gd (410 J/kg). An iterative Kovel-Fisher method was
used to determine the critical exponents governing the phase transition to be
, and . Along with a suppressed Curie temperature
relative to the bulk, the fact that the convergent value of is that
predicted by the 2-D Ising model may suggest that finite size effects play an
important role in this system. Together, these observations suggest that
nanostructuring may be a promising route to tailoring the magnetocaloric
response of materials
Development of an ultra-low-shock separation nut
The technical problems encountered in the development of an advanced separation nut design are described. The nut is capable of sustaining a large preload and releasing that load with a low level of induced pyrotechnic shock, while demonstrating a tolerance for extremely high shock imposed by other pyrotechnic devices. The analysis of the separation nut was performed to acquire additional understanding of the phenomena affecting operation of the nut and to provide quantitative evaluation of design modification for aerospace applications
- …
