3,771 research outputs found

    State-of-the-art survey of dissimilar metal joining by solid state welding

    Get PDF
    State-of-the-art of dissimilar metal joining by solid state diffusion bonding and roll and press welding, emphasizing stainless steel and aluminum allo

    A Chandra Survey of Quasar Jets: First Results

    Full text link
    We present results from Chandra X-ray imaging and spectroscopy of a flux-limited sample of flat spectrum radio-emitting quasars with jet-like extended structure. Twelve of twenty quasar jets are detected in 5 ks ACIS-S exposures. The quasars without X-ray jets are not significantly different from those in the sample with detected jets except that the extended radio emission is generally fainter. New radio maps are combined with the X-ray images in order to elucidate the relation between radio and X-ray emission in spatially resolved structures. We find a variety of morphologies, including long straight jets and bends up to 90 degrees. All X-ray jets are one-sided although the radio images used for source selection often show lobes opposite the X-ray jets. The FR II X-ray jets can all be interpreted as inverse Compton scattering of cosmic microwave background photons by electrons in large-scale relativistic jets although deeper observations are required to test this interpretation in detail. Applying this interpretation to the jets as a population, we find that the jets would be aligned to within 30 degrees of the line of sight generally, assuming that the bulk Lorentz factor of the jets is 10.Comment: 25 pages with 5 pages of color figures; accepted for publication in the Astrophysical Journal Supplements; higher resolution jpeg images are available at http://space.mit.edu/home/jonathan/jets

    Continuing a Chandra Survey of Quasar Radio Jets

    Full text link
    We are conducting an X-ray survey of flat spectrum radio quasars (FSRQs) with extended radio structures. We summarize our results from the first stage of our survey, then we present findings from its continuation. We have discovered jet X-ray emission from 12 of our first 20 Chandra targets, establishing that strong 0.5-7.0 keV emission is a common feature of FSRQ jets. The X-ray morphology is varied, but in general closely matches the radio structure until the first sharp radio bend. In the sources with optical data as well as X-ray detections we rule out simple synchrotron models for X-ray emission, suggesting these systems may instead be dominated by inverse Compton (IC) scattering. Fitting models of IC scattering of cosmic microwave background photons suggests that these jets are aligned within a few degrees of our line of sight, with bulk Lorentz factors of a few to ten and magnetic fields a bit stronger than 10510^{-5} G. In the weeks prior to this meeting, we have discovered two new X-ray jets at z>1z > 1. One (PKS B1055+201) has a dramatic, 2020''-long jet. The other (PKS B1421-490) appears unremarkable at radio frequencies, but at higher frequencies the jet is uniquely powerful: its optically-dominated, with jet/core flux ratios of 3.7 at 1 keV and 380 at 480 nm.Comment: 4 pages, 8 figures. To appear in `X-Ray and Radio Connections', ed. L.O. Sjouwerman and K.K. Dyer (published electronicly at http://www.aoc.nrao.edu/events/xraydio/). Additional material and higher resolution figures may be found at http://space.mit.edu/home/jonathan/jets

    A Compact Extreme Scattering Event Cloud Towards AO 0235+164

    Get PDF
    We present observations of a rare, rapid, high amplitude Extreme Scattering Event toward the compact BL-Lac AO 0235+164 at 6.65 GHz. The ESE cloud is compact; we estimate its diameter between 0.09 and 0.9 AU, and is at a distance of less than 3.6 kpc. Limits on the angular extent of the ESE cloud imply a minimum cloud electron density of ~ 4 x 10^3 cm^-3. Based on the amplitude and timescale of the ESE observed here, we suggest that at least one of the transients reported by Bower et al. (2007) may be attributed to ESEs.Comment: 11 pages, 2 figure

    A Multi-Wavelength Study of the Jet, Lobes and Core of the Quasar PKS 2101-490

    Get PDF
    We present a detailed study of the X-ray, optical and radio emission from the jet, lobes and core of the quasar PKS 2101-490 as revealed by new Chandra, HST and ATCA images. We extract the radio to X-ray spectral energy distributions from seven regions of the 13 arcsecond jet, and model the jet X-ray emission in terms of Doppler beamed inverse Compton scattering of the cosmic microwave background (IC/CMB) for a jet in a state of equipartition between particle and magnetic field energy densities. This model implies that the jet remains highly relativistic hundreds of kpc from the nucleus, with a bulk Lorentz factor Gamma ~ 6 and magnetic field of order 30 microGauss. We detect an apparent radiative cooling break in the synchrotron spectrum of one of the jet knots, and are able to interpret this in terms of a standard one-zone continuous injection model, based on jet parameters derived from the IC/CMB model. However, we note apparent substructure in the bright optical knot in one of the HST bands. We confront the IC/CMB model with independent estimates of the jet power, and find that the IC/CMB model jet power is consistent with the independent estimates, provided that the minimum electron Lorentz factor gamma_min > 50, and the knots are significantly longer than the jet width, as implied by de-projection of the observed knot lengths.Comment: 16 pages, 10 figures, 6 table

    Discovery of an X-ray Jet and Extended Jet Structure in the Quasar PKS 1055+201

    Get PDF
    This letter reports rich X-ray jet structures found in the Chandra observation of PKS 1055+201. In addition to an X-ray jet coincident with the radio jet we detect a region of extended X-ray emission surrounding the jet as far from the core as the radio hotspot to the North, and a similar extended X-ray region along the presumed path of the unseen counterjet to the Southern radio lobe. Both X-ray regions show a similar curvature to the west, relative to the quasar. We interpret this as the first example where we separately detect the X-ray emission from a narrow jet and extended, residual jet plasma over the entire length of a powerful FRII jet.Comment: Accepted for publication in Ap. J. Letters. 4 pages, 3 figure

    The Chandra X-ray Observatory Resolves the X-ray Morphology and Spectra of a Jet in PKS 0637-752

    Get PDF
    The core-dominated radio-loud quasar PKS 0637-752 (z = 0.654) was the first celestial object observed with the Chandra X-ray Observatory, offering the early surprise of the detection of a remarkable X-ray jet. Several observations with a variety of detector configurations contribute to a total exposure time with the Chandra Advanced CCD Imaging Spectrometer (ACIS; Garmire et al. 2000, in preparation) of about 100ks. A spatial analysis of all the available X-ray data, making use of Chandra's spatial resolving power of about 0.4 arcsec, reveals a jet that extends about 10 arcsec to the west of the nucleus. At least four X-ray knots are resolved along the jet, which contains about 5% of the overall X-ray luminosity of the source. Previous observations of PKS 0637-752 in the radio band (Tingay et al. 1998) had identified a kpc-scale radio jet extending to the West of the quasar. The X-ray and radio jets are similar in shape, intensity distribution, and angular structure out to about 9 arcsec, after which the X-ray brightness decreases more rapidly and the radio jet turns abruptly to the north. The X-ray luminosity of the total source is log Lx ~ 45.8 erg/s (2 - 10keV), and appears not to have changed since it was observed with ASCA in November 1996. We present the results of fitting a variety of emission models to the observed spectral distribution, comment on the non-existence of emission lines recently reported in the ASCA observations of PKS 0637-752, and briefly discuss plausible X-ray emission mechanisms.Comment: 24 pages, includes 8 figures, Accepted for publication in Ap

    Earth Radiation Budget Experiment (ERBE) scanner instrument anomaly investigation

    Get PDF
    The results of an ad-hoc committee investigation of in-Earth orbit operational anomalies noted on two identical Earth Radiation Budget Experiment (ERBE) Scanner instruments on two different spacecraft busses is presented. The anomalies are attributed to the bearings and the lubrication scheme for the bearings. A detailed discussion of the pertinent instrument operations, the approach of the investigation team and the current status of the instruments now in Earth orbit is included. The team considered operational changes for these instruments, rework possibilities for the one instrument which is waiting to be launched, and preferable lubrication considerations for specific space operational requirements similar to those for the ERBE scanner bearings
    corecore