54 research outputs found

    Improving the yield of circulating tumour cells facilitates molecular characterisation and recognition of discordant HER2 amplification in breast cancer

    Get PDF
    BACKGROUND: Circulating tumour cells (CTCs) offer a non-invasive approach to obtain and characterise metastatic tumour cells, but their usefulness has been limited by low CTC yields from conventional isolation methods. METHODS: To improve CTC yields and facilitate their molecular characterisation we compared the Food and Drug Administration-approved CellSearch Epithelial Kit (CEK) to a simplified CTC capture method, CellSearch Profile Kit (CPK), on paired blood samples from patients with metastatic breast (n=75) and lung (n=71) cancer. Molecular markers including Human Epidermal growth factor Receptor 2 (HER2) were evaluated on CTCs by fluorescence in situ hybridisation (FISH) and compared to patients' primary and metastatic cancer. RESULTS: The median cell count from patients with breast cancer using the CPK was 117 vs 4 for CEK (P<0.0001). Lung cancer samples were similar; CPK: 145 cells vs CEK:4 cells (P<0.0001). Recovered CTCs were relatively pure (60-70%) and were evaluable by FISH and immunofluorescence. A total of 10 of 30 (33%) breast cancer patients with HER2-negative primary and metastatic tissue had HER2-amplified CTCs. CONCLUSION: The CPK method provides a high yield of relatively pure CTCs, facilitating their molecular characterisation. Circulating tumour cells obtained using CPK technology demonstrate that significant discordance exists between HER2 amplification of a patient's CTCs and that of the primary and metastatic tumour

    Ovarian cancer

    Get PDF
    Ovarian cancer is not a single disease and can be subdivided into at least five different histological subtypes that have different identifiable risk factors, cells of origin, molecular compositions, clinical features and treatments. Ovarian cancer is a global problem, is typically diagnosed at a late stage and has no effective screening strategy. Standard treatments for newly diagnosed cancer consist of cytoreductive surgery and platinum-based chemotherapy. In recurrent cancer, chemotherapy, anti-angiogenic agents and poly(ADP-ribose) polymerase inhibitors are used, and immunological therapies are currently being tested. High-grade serous carcinoma (HGSC) is the most commonly diagnosed form of ovarian cancer and at diagnosis is typically very responsive to platinum-based chemotherapy. However, in addition to the other histologies, HGSCs frequently relapse and become increasingly resistant to chemotherapy. Consequently, understanding the mechanisms underlying platinum resistance and finding ways to overcome them are active areas of study in ovarian cancer. Substantial progress has been made in identifying genes that are associated with a high risk of ovarian cancer (such as BRCA1 and BRCA2), as well as a precursor lesion of HGSC called serous tubal intraepithelial carcinoma, which holds promise for identifying individuals at high risk of developing the disease and for developing prevention strategies

    Expression and function of bactericidal/permeability-increasing protein in human genital tract epithelial cells

    No full text
    Genital tract epithelia regularly encounter and adapt to the existence of bacterial pathogens. This study provides evidence that the endocervical and ectocervical epithelia of the human female genital tract express bactericidal/permeability-increasing protein (BPI). The constitutive expression of BPI was restricted to cell-bound protein and unaffected by human papillomavirus type 16/E6E7 immortalization and proinflammatory cytokine stimulation. Epithelial BPI was, in part, responsible for killing a commensal strain of Escherichia coli. The results of the present study suggest that BPI is tightly regulated and functionally expressed by epithelial cells in the female reproductive tract and may play a role in regulating bacterial colonization in the genital mucosa
    corecore