25,938 research outputs found
Doubled Full Shot Noise in Quantum Coherent Superconductor - Semiconductor Junctions
We performed low temperature shot noise measurements in Superconductor (TiN)
- strongly disordered normal metal (heavily doped Si) weakly transparent
junctions. We show that the conductance has a maximum due to coherent multiple
reflections at low energy and that shot noise is then twice the Poisson noise
(S=4eI). The shot noise changes to the normal value (S=2eI) due to a large
quasiparticle contribution.Comment: published in Physical Review Letter
Radiation-driven winds of hot luminous stars. XVI. Expanding atmospheres of massive and very massive stars and the evolution of dense stellar clusters
Context: Starbursts, and particularly their high-mass stars, play an
essential role in the evolution of galaxies. The winds of massive stars not
only significantly influence their surroundings, but the mass loss also
profoundly affects the evolution of the stars themselves. In addition to the
evolution of each star, the evolution of the dense cores of massive starburst
clusters is affected by N-body interactions, and the formation of very massive
stars via mergers may be decisive for the evolution of the cluster.
Aims: To introduce an advanced diagnostic method of O-type stellar
atmospheres with winds, including an assessment of the accuracy of the
determinations of abundances, stellar and wind parameters.
Methods: We combine consistent models of expanding atmospheres with detailed
stellar evolutionary calculations of massive and very massive single stars with
regard to the evolution of dense stellar clusters. Accurate predictions of the
mass loss rates of very massive stars requires a highly consistent treatment of
the statistical equilibrium and the hydrodynamic and radiative processes in the
expanding atmospheres.
Results: We present computed mass loss rates, terminal wind velocities, and
spectral energy distributions of massive and very massive stars of different
metallicities, calculated from atmospheric models with an improved level of
consistency.
Conclusions: Stellar evolutionary calculations using our computed mass loss
rates show that low-metallicity very massive stars lose only a very small
amount of their mass, making it unlikely that very massive population III stars
cause a significant helium enrichment of the interstellar medium.
Solar-metallicity stars have higher mass-loss rates, but these are not so high
to exclude very massive stars formed by mergers in dense clusters from ending
their life massive enough to form intermediate-mass black holes.Comment: Accepted by A&
Can only flavor-nonsinglet H dibaryons be stable against strong decays?
Using the QCD sum rule approach, we show that the flavor-nonsinglet
dibaryon states with J, J, I=1 (27plet) are nearly
degenerate with the J, I=0 singlet dibaryon, which has been
predicted to be stable against strong decay, but has not been observed. Our
calculation, which does not require an instanton correction, suggests that the
is slightly heavier than these flavor-nonsinglet s over a wide range
of the parameter space. If the singlet mass lies above the threshold (2231~MeV), then the strong interaction breakup to would produce a very broad resonance in the
invariant mass spectrum which would be very difficult to observe. On the other
hand, if these flavor-nonsinglet J=0 and 1 dibaryons are also above the
threshold, but below the breakup threshold (2254
MeV), then because the direct, strong interaction decay to the channel is forbidden, these flavor-nonsinglet states might be more
amenable to experimental observation. The present results allow a possible
reconciliation between the reported observation of
hypernuclei, which argue against a stable , and the possible existence of
dibaryons in general.Comment: 10 pages, 2 figure
First Lattice Study of the - Transition Form Factors
Experiments at Jefferson Laboratory, MIT-Bates, LEGS, Mainz, Bonn, GRAAL, and
Spring-8 offer new opportunities to understand in detail how nucleon resonance
() properties emerge from the nonperturbative aspects of QCD. Preliminary
data from CLAS collaboration, which cover a large range of photon virtuality
show interesting behavior with respect to dependence: in the region
, both the transverse amplitude, , and the
longitudinal amplitude, , decrease rapidly. In this work, we
attempt to use first-principles lattice QCD (for the first time) to provide a
model-independent study of the Roper-nucleon transition form factor.Comment: 4 pages, 2 figures, double colum
Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers
Spin pumping is a mechanism that generates spin currents from ferromagnetic
resonance (FMR) over macroscopic interfacial areas, thereby enabling sensitive
detection of the inverse spin Hall effect that transforms spin into charge
currents in non-magnetic conductors. Here we study the spin-pumping-induced
voltages due to the inverse spin Hall effect in permalloy/normal metal bilayers
integrated into coplanar waveguides for different normal metals and as a
function of angle of the applied magnetic field direction, as well as microwave
frequency and power. We find good agreement between experimental data and a
theoretical model that includes contributions from anisotropic
magnetoresistance (AMR) and inverse spin Hall effect (ISHE). The analysis
provides consistent results over a wide range of experimental conditions as
long as the precise magnetization trajectory is taken into account. The spin
Hall angles for Pt, Pd, Au and Mo were determined with high precision to be
, , and ,
respectively.Comment: 11 page
Treatment of mitral stenosis
In patients with mitral stenosis the need for therapeutic intervention can be assessed by clinical and non-invasive data. Mitral valve replacement is indicated when marked dyspnoea on mild exertion, dyspnoea at rest or pulmonray oedema, haemoptpis, atrial fibrillation, recurrent systemic emboli or right ventricular failure occur in a patient with a mitral valve area of <1·5cm2, as memured by Doppler echocardiography. This treatment will entail life-long anticoagulation in the majoriv of patients. Closed commissurotomy is no longer considered a valid therapeutic alternative due to its limited success rate but open cormmissurotomy and balloon valvotomy may be performed in patients with no significant calcification of valve cusps and no major concomitant mitral regurgitation. Preservation of the subvalvular apparatus and left ventricular geometry can be comidered the most important advantages of these techniques. More severe chronic symptom are generally required m indication for mitral valve replacement because of the additional long-term imponderabilities imposed by an implanted artrficial device. Therefore, in patienb with mitral stenosis different symptom and clinical findings will eventually lead to different intervention
Test results of Spacelab 2 infrared telescope focal plane
The small helium cooled infrared telescope for Spacelab 2 is designed for sensitive mapping of extended, low-surface-brightness celestial sources as well as highly sensitive investigations of the shuttle contamination environment (FPA) for this mission is described as well as the design for a thermally isolated, self-heated J-FET transimpedance amplifier. This amplifier is Johnson noise limited for feedback resistances from less than 10 to the 8th power Omega to greater than 2 x 10 to the 10th power Omega at T = 4.2K. Work on the focal plane array is complete. Performance testing for qualification of the flight hardware is discussed, and results are presented. All infrared data channels are measured to be background limited by the expected level of zodiacal emission
Quantifying spin Hall angles from spin pumping: Experiments and Theory
Spin Hall effects intermix spin and charge currents even in nonmagnetic
materials and, therefore, ultimately may allow the use of spin transport
without the need for ferromagnets. We show how spin Hall effects can be
quantified by integrating permalloy/normal metal (N) bilayers into a coplanar
waveguide. A dc spin current in N can be generated by spin pumping in a
controllable way by ferromagnetic resonance. The transverse dc voltage detected
along the permalloy/N has contributions from both the anisotropic
magnetoresistance (AMR) and the spin Hall effect, which can be distinguished by
their symmetries. We developed a theory that accounts for both. In this way, we
determine the spin Hall angle quantitatively for Pt, Au and Mo. This approach
can readily be adapted to any conducting material with even very small spin
Hall angles.Comment: 4 pages, 4 figure
- …
