13 research outputs found

    YB-1 transcription factor promotes Sorafenib resistance in Liver Cancer

    Get PDF
    Background: Hepatocellular carcinoma (HCC) is a primary malignant liver tumor that commonly occurs as a progression of chronic liver inflammation. Sorafenib is the standard first-line systemic drug for advanced HCC, but the acquired resistance to sorafenib results in limited benefits. The mechanism underlying sorafenib resistance in HCC remains unclear. Recently, we have identified a multifunctional oncoprotein Y-box binding protein-1 (YB-1) that dysregulates a wide range of genes involved in drug resistance in other cancers and is responsible for increasing the IC-50 of sorafenib in HCC cell lines. In this study we will analyze the signaling pathways and genes regulated by YB-1, that is responsible for increasing sorafenib resistant in liver cancer cells. Methods: HCC cell lines SK-Hep-1, C3A, HepG2 and Hep-3B were treated with Sorafenib and the IC-50 was calculated using MTT assay. RNA and protein of YB-1 was analyzed using RT-PCR and western blot respectively. Lentiviral based overexpression and knockdown of YB1 was performed in these cell lines and sorafenib IC50 were calculated to verify its role in Sorafenib resistance. Development of sorafenib resistant cell line is in progress. Results: IC-50 values calculated from MTT assays of the HCC cell lines were compared with the YB-1 protein expression in four liver cancer cell lines. Knockdown of YB-1 re-sensitized cell lines to Sorafenib. We have developed Sorafenib resistant cell lines to further study the mechanism of YB-1 mediated drug resistance. Conclusion: This study will establish oncogenic YB-1 protein as an effective therapeutic target to overcome sorafenib resistance in liver cancer

    Strategies for Multiplexed Electrochemical Sensor Development

    Get PDF
    Detection of multiple biomarkers for disease diagnosis or treatment monitoring has received a lot of attention due to their potential impact on clinical decision making. Electrochemical biosensors have become one of the preferred detection approaches, due to the simplicity of the accompanying instrumentation. This chapter will explore how electrochemical sensors can be utilized for detection of multiple analytes by integration of sensors into microfluidic microsystems. Some key fabrication technologies for such devices will be presented utilizing polymer microfabrication, paper-based approaches, and the use of printed circuit boards. Next, the use of electrode arrays will be presented along with some commercial platforms, outlining plausible paths towards a successful electrochemical multiplexed sensor. Novel approaches based on microbeads and various labels will then be introduced along with various strategies and technologies utilized to achieve ultrasensitive multiplexed detection

    Nanosensors based detection of foodborne pathogens

    Get PDF
    Contaminated food cause by pathogens is one of the main reasons incidences of human diseases cases all around the world. Typically, most foodborne contaminants caused by bacteria, parasites and virus that have a major economic impact. It is important to restrain them, thus early detection system is very crucial. Several methods have been explored for the detection and identification of these microorganisms in food samples. However, some of these methods are involves complicated sample pre-treatment, laborious, time-consuming and are not suitable for on-site applications. Therefore, it is very important to develop rapid, sensitive, selective and more approachable detection methods. Recently, biosensors have been explored as alternative approach method and considered as one of most rapid and on-site applicable methods. Advancements in nanotechnology have provided biosensor with novel architecture by using nanoscaled materials and structures for enhance the biosensing performance. This article highlights the significant progress of nanosensor based on electrochemical and optical, and other types of nanosensors with the focus on the foodborne pathogen detection
    corecore