3,363 research outputs found
The z>4 Quasar Population Observed by Chandra and XMM-Newton
The current status of our Chandra and XMM-Newton project on high-redshift
(z>4) quasars is briefly reviewed. We report the main results obtained in the
last few years for the detected quasars, along with a few (~10%) intriguing
cases where no detection has been obtained with Chandra snapshot observations.Comment: 4 pages, to appear in the proceedings of 'Multiwavelength AGN
surveys' (Cozumel, December 8-12 2003), ed. R. Maiolino and R. Mujic
Neutron irradiation effect on SiPMs up to = 5 10 cm
Silicon Photo-Multipliers (SiPM) are becoming the photo-detector of choice
for increasingly more particle detection applications, from fundamental physics
to medical and societal applications. One major consideration for their use at
high-luminosity colliders is the radiation damage induced by hadrons, which
leads to a dramatic increase of the dark count rate. KETEK SiPMs have been
exposed to various fluences of reactor neutrons up to =
510 cm (1 MeV equivalent neutrons). Results from the I-V,
and C-V measurements for temperatures between 30C and 30C
are presented. We propose a new method to quantify the effect of radiation
damage on the SiPM performance. Using the measured dark current the single
pixel occupation probability as a function of temperature and excess voltage is
determined. From the pixel occupation probability the operating conditions for
given requirements can be optimized. The method is qualitatively verified using
current measurements with the SiPM illuminated by blue LED light
X-ray Lighthouses of the High-Redshift Universe. II. Further Snapshot Observations of the Most Luminous z>4 Quasars with Chandra
We report on Chandra observations of a sample of 11 optically luminous
(Mb<-28.5) quasars at z=3.96-4.55 selected from the Palomar Digital Sky Survey
and the Automatic Plate Measuring Facility Survey. These are among the most
luminous z>4 quasars known and hence represent ideal witnesses of the end of
the "dark age ''. Nine quasars are detected by Chandra, with ~2-57 counts in
the observed 0.5-8 keV band. These detections increase the number of X-ray
detected AGN at z>4 to ~90; overall, Chandra has detected ~85% of the
high-redshift quasars observed with snapshot (few kilosecond) observations. PSS
1506+5220, one of the two X-ray undetected quasars, displays a number of
notable features in its rest-frame ultraviolet spectrum, the most prominent
being broad, deep SiIV and CIV absorption lines. The average optical-to-X-ray
spectral index for the present sample (=-1.88+/-0.05) is steeper than
that typically found for z>4 quasars but consistent with the expected value
from the known dependence of this spectral index on quasar luminosity.
We present joint X-ray spectral fitting for a sample of 48 radio-quiet
quasars in the redshift range 3.99-6.28 for which Chandra observations are
available. The X-ray spectrum (~870 counts) is well parameterized by a power
law with Gamma=1.93+0.10/-0.09 in the rest-frame ~2-40 keV band, and a tight
upper limit of N_H~5x10^21 cm^-2 is obtained on any average intrinsic X-ray
absorption. There is no indication of any significant evolution in the X-ray
properties of quasars between redshifts zero and six, suggesting that the
physical processes of accretion onto massive black holes have not changed over
the bulk of cosmic time.Comment: 15 pages, 7 figures, accepted for publication in A
- …