1,084 research outputs found
Migration of extrasolar planets to large orbital radii
Observations of structure in circumstellar debris discs provide
circumstantial evidence for the presence of massive planets at large (several
tens of au) orbital radii, where the timescale for planet formation via core
accretion is prohibitively long. Here, we investigate whether a population of
distant planets can be produced via outward migration subsequent to formation
in the inner disc. Two possibilities for significant outward migration are
identified. First, cores that form early at radii of around 10 au can be
carried to larger radii via gravitational interaction with the gaseous disc.
This process is efficient if there is strong mass loss from the disc - either
within a cluster or due to photoevaporation from a star more massive than the
Sun - but does not require the extremely destructive environment found, for
example, in the core of the Orion Nebula. We find that, depending upon the disc
model, gas disc migration can yield massive planets (several Jupiter masses) at
radii of around 20-50 au. Second, interactions within multiple planet systems
can drive the outer planet into a large, normally highly eccentric orbit. A
series of scattering experiments suggests that this process is most efficient
for lower mass planets within systems of unequal mass ratio. This mechanism is
a good candidate for explaining the origin of relatively low mass giant planets
in eccentric orbits at large radii.Comment: MNRAS, in pres
Corrections to Newton's law of gravitation - application to hybrid Bloch brane
We present in this work, the calculations of corrections in the Newton's law
of gravitation due to Kaluza-Klein gravitons in five-dimensional warped thick
braneworld scenarios. We consider here a recently proposed model, namely, the
hybrid Bloch brane. This model couples two scalar fields to gravity and is
engendered from a domain wall-like defect. Also, two other models the so-called
asymmetric hybrid brane and compact brane are considered. As a matter of fact,
these models are obtained from deformations of the phi4 and sine-Gordon
topological defects. Then, we constructed the branes upon such defects, and the
corresponding corrections in Newton's law of gravitation are computed. In order
to attain the mass spectrum and its corresponding eigenfunctions which are the
essential quantities for computing the correction to the Newtonian potential,
we develop a suitable numerical technique.Comment: 7 pages, 3 figures, Proceedings of The XXVth International Conference
on Integrable Systems and Quantum symmetries (ISQS-25
Multi-Planet Destabilisation and Escape in Post-Main Sequence Systems
Discoveries of exoplanets orbiting evolved stars motivate critical
examinations of the dynamics of -body systems with mass loss. Multi-planet
evolved systems are particularly complex because of the mutual interactions
between the planets. Here, we study the underlying dynamical mechanisms which
can incite planetary escape in two-planet post-main sequence systems. Stellar
mass loss alone is unlikely to be rapid and high enough to eject planets at
typically-observed separations. However, the combination of mass loss and
planet-planet interactions can prompt a shift from stable to chaotic regions of
phase space. Consequently, when mass loss ceases, the unstable configuration
may cause escape. By assuming a constant stellar mass loss rate, we utilize
maps of dynamical stability to illustrate the distribution of regular and
chaotic trajectories in phase space. We show that chaos can drive the planets
to undergo close encounters, leading to the ejection of one planet. Stellar
mass loss can trigger the transition of a planetary system from a stable to
chaotic configuration, subsequently causing escape. We find that mass loss
non-adiabatically affects planet-planet interaction for the most massive
progenitor stars which avoid the supernova stage. For these cases, we present
specific examples of planetary escape.Comment: Accepted for publication in MNRAS (2013
Recommended from our members
Eight billion asteroids in the Oort cloud
The Oort cloud is usually thought of as a collection of icy comets inhabiting the outer reaches of the Solar system, but this picture is incomplete. We use simulations of the formation of the Oort cloud to show that ∼4 per cent of the small bodies in the Oort cloud should have formed within 2.5 au of the Sun, and hence be ice-free rock-iron bodies. If we assume that these Oort cloud asteroids have the same size distribution as their cometary counterparts, the Large Synoptic Survey Telescope should find roughly a dozen Oort cloud asteroids during 10 years of operations. Measurement of the asteroid fraction within the Oort cloud can serve as an excellent test of the Solar system's formation and dynamical history. Oort cloud asteroids could be of particular concern as impact hazards as their high mass density, high impact velocity, and low visibility make them both hard to detect and hard to divert or destroy. However, they should be a rare class of object, and we estimate globally catastrophic collisions should only occur about once per billion years.AS andMWare supported by the European
Union through ERC grant number 279973. DV is supported
by the European Union through ERC grant number 320964.This is the final published version. It first appeared at http://mnras.oxfordjournals.org/content/446/2/2059
The formation of the solar system
The solar system started to form about 4.56 Gyr ago and despite the long
intervening time span, there still exist several clues about its formation. The
three major sources for this information are meteorites, the present solar
system structure and the planet-forming systems around young stars. In this
introduction we give an overview of the current understanding of the solar
system formation from all these different research fields. This includes the
question of the lifetime of the solar protoplanetary disc, the different stages
of planet formation, their duration, and their relative importance. We consider
whether meteorite evidence and observations of protoplanetary discs point in
the same direction. This will tell us whether our solar system had a typical
formation history or an exceptional one. There are also many indications that
the solar system formed as part of a star cluster. Here we examine the types of
cluster the Sun could have formed in, especially whether its stellar density
was at any stage high enough to influence the properties of today's solar
system. The likelihood of identifying siblings of the Sun is discussed.
Finally, the possible dynamical evolution of the solar system since its
formation and its future are considered.Comment: 36 pages, 7 figures, invited review in Physica Script
Transiting Disintegrating Planetary Debris around WD 1145+017
More than a decade after astronomers realized that disrupted planetary
material likely pollutes the surfaces of many white dwarf stars, the discovery
of transiting debris orbiting the white dwarf WD 1145+017 has opened the door
to new explorations of this process. We describe the observational evidence for
transiting planetary material and the current theoretical understanding (and in
some cases lack thereof) of the phenomenon.Comment: Invited review chapter. Accepted March 23, 2017 and published October
7, 2017 in the Handbook of Exoplanets. 15 pages, 10 figure
Extrasolar planetary dynamics with a generalized planar Laplace-Lagrange secular theory
The dynamical evolution of nearly half of the known extrasolar planets in
multiple-planet systems may be dominated by secular perturbations. The commonly
high eccentricities of the planetary orbits calls into question the utility of
the traditional Laplace-Lagrange (LL) secular theory in analyses of the motion.
We analytically generalize this theory to fourth-order in the eccentricities,
compare the result with the second-order theory and octupole-level theory, and
apply these theories to the likely secularly-dominated HD 12661, HD 168443, HD
38529 and Ups And multi-planet systems. The fourth-order scheme yields a
multiply-branched criterion for maintaining apsidal libration, and implies that
the apsidal rate of a small body is a function of its initial eccentricity,
dependencies which are absent from the traditional theory. Numerical results
indicate that the primary difference the second and fourth-order theories
reveal is an alteration in secular periodicities, and to a smaller extent
amplitudes of the planetary eccentricity variation. Comparison with numerical
integrations indicates that the improvement afforded by the fourth-order theory
over the second-order theory sometimes dwarfs the improvement needed to
reproduce the actual dynamical evolution. We conclude that LL secular theory,
to any order, generally represents a poor barometer for predicting secular
dynamics in extrasolar planetary systems, but does embody a useful tool for
extracting an accurate long-term dynamical description of systems with small
bodies and/or near-circular orbits.Comment: 14 pages, 12 figures, 1 table, accepted for publication in Ap
- …
