3,646 research outputs found
New calculation schemes for proton-deuteron scattering including the Coulomb interaction
The Coulomb interaction between the protons is included in the description of
proton-deuteron scattering using the screening and renormalization approach in
the framework of momentum-space integral equations. Two new calculational
schemes are presented that confirm the reliability of the perturbative approach
for treating the screened Coulomb interaction in high partial waves, used by us
in earlier works.Comment: To be published in Phys. Rev.
Benchmark calculation for proton-deuteron elastic scattering observables including Coulomb
Two independent calculations of proton-deuteron elastic scattering
observables including Coulomb repulsion between the two protons are compared in
the proton lab energy region between 3 MeV and 65 MeV. The hadron dynamics is
based on the purely nucleonic charge-dependent AV18 potential. Calculations are
done both in coordinate space and momentum space. The coordinate-space
calculations are based on a variational solution of the three-body
Schr\"odinger equation using a correlated hyperspherical expansion for the wave
function. The momentum-space calculations proceed via the solution of the
Alt-Grassberger-Sandhas equation using the screened Coulomb potential and the
renormalization approach. Both methods agree within 1% on all observables,
showing the reliability of both numerical techniques in that energy domain. At
energies below three-body breakup threshold the coordinate-space method remains
favored whereas at energies higher than 65 MeV the momentum-space approach
seems to be more efficient.Comment: Submitted to Phys. Rev.
Towards a Mg lattice clock: Observation of the transition and determination of the magic wavelength
We optically excite the electronic state in Mg atoms,
laser-cooled and trapped in a magic-wavelength lattice. An applied magnetic
field enhances the coupling of the light to the otherwise strictly forbidden
transition. We determine the magic wavelength, the quadratic magnetic Zeeman
shift and the transition frequency to be 468.463(207)nm,
-206.6(2.0)MHz/T and 655 058 646 691(101)kHz, respectively. These
are compared with theoretical predictions and results from complementary
experiments. We also developed a high-precision relativistic structure model
for magnesium, give an improved theoretical value for the blackbody radiation
shift and discuss a clock based on bosonic magnesium.Comment: 5 pages, 3 figure
Generalized isothermic lattices
We study multidimensional quadrilateral lattices satisfying simultaneously
two integrable constraints: a quadratic constraint and the projective Moutard
constraint. When the lattice is two dimensional and the quadric under
consideration is the Moebius sphere one obtains, after the stereographic
projection, the discrete isothermic surfaces defined by Bobenko and Pinkall by
an algebraic constraint imposed on the (complex) cross-ratio of the circular
lattice. We derive the analogous condition for our generalized isthermic
lattices using Steiner's projective structure of conics and we present basic
geometric constructions which encode integrability of the lattice. In
particular, we introduce the Darboux transformation of the generalized
isothermic lattice and we derive the corresponding Bianchi permutability
principle. Finally, we study two dimensional generalized isothermic lattices,
in particular geometry of their initial boundary value problem.Comment: 19 pages, 11 figures; v2. some typos corrected; v3. new references
added, higlighted similarities and differences with recent papers on the
subjec
Unzipping Kinetics of Double-Stranded DNA in a Nanopore
We studied the unzipping kinetics of single molecules of double-stranded DNA
by pulling one of their two strands through a narrow protein pore. PCR analysis
yielded the first direct proof of DNA unzipping in such a system. The time to
unzip each molecule was inferred from the ionic current signature of DNA
traversal. The distribution of times to unzip under various experimental
conditions fit a simple kinetic model. Using this model, we estimated the
enthalpy barriers to unzipping and the effective charge of a nucleotide in the
pore, which was considerably smaller than previously assumed.Comment: 10 pages, 5 figures, Accepted: Physics Review Letter
Thermocapillary actuation of liquid flow on chemically patterned surfaces
We have investigated the thermocapillary flow of a Newtonian liquid on hydrophilic microstripes which are lithographically defined on a hydrophobic surface. The speed of the microstreams is studied as a function of the stripe width w, the applied thermal gradient |dT/dx| and the liquid volume V deposited on a connecting reservoir pad. Numerical solutions of the flow speed as a function of downstream position show excellent agreement with experiment. The only adjustable parameter is the inlet film height, which is controlled by the ratio of the reservoir pressure to the shear stress applied to the liquid stream. In the limiting cases where this ratio is either much smaller or much larger than unity, the rivulet speed shows a power law dependency on w, |dT/dx| and V. In this study we demonstrate that thermocapillary driven flow on chemically patterned surfaces can provide an elegant and tunable method for the transport of ultrasmall liquid volumes in emerging microfluidic technologies
Dimension of interaction dynamics
A method allowing to distinguish interacting from non-interacting systems
based on available time series is proposed and investigated. Some facts
concerning generalized Renyi dimensions that form the basis of our method are
proved. We show that one can find the dimension of the part of the attractor of
the system connected with interaction between its parts. We use our method to
distinguish interacting from non-interacting systems on the examples of
logistic and H\'enon maps. A classification of all possible interaction schemes
is given.Comment: 15 pages, 14 (36) figures, submitted to PR
Inductively guided circuits for ultracold dressed atoms
Recent progress in optics, atomic physics and material science has paved the way to study quantum effects in ultracold atomic alkali gases confined to non-trivial geometries. Multiply connected traps for cold atoms can be prepared by combining inhomogeneous distributions of DC and radio-frequency electromagnetic fields with optical fields that require complex systems for frequency control and stabilization. Here we propose a flexible and robust scheme that creates closed quasi-one-dimensional guides for ultracold atoms through the ‘dressing’ of hyperfine sublevels of the atomic ground state, where the dressing field is spatially modulated by inductive effects over a micro-engineered conducting loop. Remarkably, for commonly used atomic species (for example, 7Li and 87Rb), the guide operation relies entirely on controlling static and low-frequency fields in the regimes of radio-frequency and microwave frequencies. This novel trapping scheme can be implemented with current technology for micro-fabrication and electronic control
Characterization of growth and metabolism of the haloalkaliphile Natronomonas pharaonis
Natronomonas pharaonis is an archaeon adapted to two extreme conditions: high salt concentration and alkaline pH. It has become one of the model organisms for the study of extremophilic life. Here, we present a genome-scale, manually curated metabolic reconstruction for the microorganism. The reconstruction itself represents a knowledge base of the haloalkaliphile's metabolism and, as such, would greatly assist further investigations on archaeal pathways. In addition, we experimentally determined several parameters relevant to growth, including a characterization of the biomass composition and a quantification of carbon and oxygen consumption. Using the metabolic reconstruction and the experimental data, we formulated a constraints-based model which we used to analyze the behavior of the archaeon when grown on a single carbon source. Results of the analysis include the finding that Natronomonas pharaonis, when grown aerobically on acetate, uses a carbon to oxygen consumption ratio that is theoretically near-optimal with respect to growth and energy production. This supports the hypothesis that, under simple conditions, the microorganism optimizes its metabolism with respect to the two objectives. We also found that the archaeon has a very low carbon efficiency of only about 35%. This inefficiency is probably due to a very low P/O ratio as well as to the other difficulties posed by its extreme environment
Practical approximation scheme for the pion dynamics in the three-nucleon system
We discuss a working approximation scheme to a recently developed formulation
of the coupled piNNN-NNN problem. The approximation scheme is based on the
physical assumption that, at low energies, the 2N-subsystem dynamics in the
elastic channel is conveniently described by the usual 2N-potential approach,
while the explicit pion dynamics describes small, correction-type effects.
Using the standard separable-expansion method, we obtain a dynamical equation
of the Alt-Grassberger-Sandhas (AGS) type. This is an important result, because
the computational techniques used for solving the normal AGS equation can also
be used to describe the pion dynamics in the 3N system once the matrix
dimension is increased by one component. We have also shown that this
approximation scheme treats the conventional 3N problem once the pion degrees
of freedom are projected out. Then the 3N system is described with an extended
AGS-type equation where the spin-off of the pion dynamics (beyond the 2N
potential) is taken into account in additional contributions to the driving
term. These new terms are shown to reproduce the diagrams leading to modern
3N-force models. We also recover two sets of irreducible diagrams that are
commonly neglected in 3N-force discussions, and conclude that these sets should
be further investigated, because a claimed cancellation is questionable.Comment: 18 pages, including 5 figures, RevTeX, Eps
- …
