498 research outputs found

    Authoritarian Populist Opinion in Europe

    Get PDF
    The paper extends work done on authoritarian populism (AP) in the UK to 11 other European countries: France, Germany, Sweden, Denmark, Finland, Poland, Italy, Spain, Romania, Lithuania, and Holland. Representative sample surveys with a common set of questions were conducted in each of these countries and in the UK in November 2016. The paper shows that authoritarian populist attitudes (anti-immigrant, anti-EU, anti-Human Rights and pro a robust foreign policy) form a single AP factor or scale in ten of the twelve countries surveyed (the two exceptions are Romania and Lithuania). Across these ten countries the sources of AP attitudes are also very similar, with particularly strong effects being observed for the perceived cultural consequences of immigration. The paper uses cluster analysis to show that authoritarian populism is not an exclusively right-wing mindset among European mass publics. Analysis of voting data shows that the reservoir of support for authoritarian populist parties is much larger than either the current electoral strength of such parties or the proportion of the population that intends to vote for them at the next general election would suggest

    Two Fields Are Better Than One: Developmental and Comparative Perspectives On Understanding Spatial Reorientation

    Get PDF
    Occasionally, we lose track of our position in the world, and must re-establish where we are located in order to function. This process has been termed the ability to reorient and was first studied by Ken Cheng in 1986. Reorientation research has revealed some powerful cross-species commonalities. It has also engaged the question of human uniqueness because it has been claimed that human adults reorient differently from other species, or from young human children, in a fashion grounded in the distinctive combinatorial power of human language. In this chapter, we consider the phenomenon of reorientation in comparative perspective, both to evaluate specific claims regarding commonalities and differences in spatial navigation, and also to illustrate, more generally, how comparative cognition research and research in human cognitive development have deep mutual relevance

    Climate Science, Development Practice, and Policy Interactions in Dryland Agroecological Systems

    Get PDF
    The literature on drought, livelihoods, and poverty suggests that dryland residents are especially vulnerable to climate change. However, assessing this vulnerability and sharing lessons between dryland communities on how to reduce vulnerability has proven difficult because of multiple definitions of vulnerability, complexities in quantification, and the temporal and spatial variability inherent in dryland agroecological systems. In this closing editorial, we review how we have addressed these challenges through a series of structured, multiscale, and interdisciplinary vulnerability assessment case studies from drylands in West Africa, southern Africa, Mediterranean Europe, Asia, and Latin America. These case studies adopt a common vulnerability framework but employ different approaches to measuring and assessing vulnerability. By comparing methods and results across these cases, we draw out the following key lessons: (1) Our studies show the utility of using consistent conceptual frameworks for vulnerability assessments even when quite different methodological approaches are taken; (2) Utilizing narratives and scenarios to capture the dynamics of dryland agroecological systems shows that vulnerability to climate change may depend more on access to financial, political, and institutional assets than to exposure to environmental change; (3) Our analysis shows that although the results of quantitative models seem authoritative, they may be treated too literally as predictions of the future by policy makers looking for evidence to support different strategies. In conclusion, we acknowledge there is a healthy tension between bottom-up/ qualitative/place-based approaches and top-down/quantitative/generalizable approaches, and we encourage researchers from different disciplines with different disciplinary languages, to talk, collaborate, and engage effectively with each other and with stakeholders at all levels

    Recent Progress in STIR 5.0

    Get PDF
    STIR is an open source software for Emission Tomography data manipulation and image reconstruction, covering both PET and SPECT. In this work recent additions to the STIR code base are highlighted, namely the ability to read General Electric (GE) Raw Data Format 9 (RDF9) files, incorporation of GPU operators for forward and back projection, as well as work towards quantitative imaging for both PET and SPECT

    Detection Efficiency Modelling and Joint Activity and Attenuation Reconstruction in non-TOF 3D PET from Multiple-Energy Window Data

    Get PDF
    Emission-based attenuation correction (AC) meth-ods offer the possibility of overcoming quantification errors induced by conventional MR-based approaches in PET/MR imaging. However, the joint problem of determining AC and the activity of interest is strongly ill-posed in non-TOF PET. This can be improved by exploiting the extra information arising from low energy window photons, but the feasibility of this approach has only been studied with relatively simplistic analytic simulations so far. This manuscript aims to address some of the remaining challenges needed to handle realistic measurements; in particular, the detection efficiency (“normalisation”) estimation for each energy window is investigated. An energy-dependent detection efficiency model is proposed, accounting for the presence of unscattered events in the lower energy window due to detector scatter. Geometric calibration factors are estimated prior to the reconstruction for both scattered and unscattered events. Different reconstruction methods are also compared. Results show that geometric factors differ markedly between the energy windows and that our analytical model correspond in good approximation to Monte Carlo simulation; the multiple energy window reconstruction appears sensitive to input/model mismatch. Our method applies to Monte Carlo generated data but can be extended to measured data. This study is restricted to single scatter events

    Gender Equity Considerations in Food Systems for Healthier Diets

    Get PDF

    The novel choline kinase inhibitor ICL-CCIC-0019 reprograms cellular metabolism and inhibits cancer cell growth.

    Get PDF
    The glycerophospholipid phosphatidylcholine is the most abundant phospholipid species of eukaryotic membranes and essential for structural integrity and signaling function of cell membranes required for cancer cell growth. Inhibition of choline kinase alpha (CHKA), the first committed step to phosphatidylcholine synthesis, by the selective small-molecule ICL-CCIC-0019, potently suppressed growth of a panel of 60 cancer cell lines with median GI50 of 1.12 μM and inhibited tumor xenograft growth in mice. ICL-CCIC-0019 decreased phosphocholine levels and the fraction of labeled choline in lipids, and induced G1 arrest, endoplasmic reticulum stress and apoptosis. Changes in phosphocholine cellular levels following treatment could be detected non-invasively in tumor xenografts by [18F]-fluoromethyl-[1,2–2H4]-choline positron emission tomography. Herein, we reveal a previously unappreciated effect of choline metabolism on mitochondria function. Comparative metabolomics demonstrated that phosphatidylcholine pathway inhibition leads to a metabolically stressed phenotype analogous to mitochondria toxin treatment but without reactive oxygen species activation. Drug treatment decreased mitochondria function with associated reduction of citrate synthase expression and AMPK activation. Glucose and acetate uptake were increased in an attempt to overcome the metabolic stress. This study indicates that choline pathway pharmacological inhibition critically affects the metabolic function of the cell beyond reduced synthesis of phospholipids

    Preparation, structural characterisation and antibacterial properties of Ga-doped sol-gel phosphate-based glass

    Get PDF
    A sol-gel preparation of Ga-doped phosphate-based glass with potential application in antimicrobial devices has been developed. Samples of composition (CaO)(0.30)(Na2O)(0.20-x) (Ga2O3) (x) (P2O5)(0.50) where x = 0 and 0.03 were prepared, and the structure and properties of the gallium-doped sample compared with those of the sample containing no gallium. Analysis of the P-31 MAS NMR data demonstrated that addition of gallium to the sol-gel reaction increases the connectivity of the phosphate network at the expense of hydroxyl groups. This premise is supported by the results of the elemental analysis, which showed that the gallium-free sample contains significantly more hydrogen and by FTIR spectroscopy, which revealed a higher concentration of -OH groups in that sample. Ga K-edge extended X-ray absorption fine structure and X-ray absorption near-edge structure data revealed that the gallium ions are coordinated by six oxygen atoms. In agreement with the X-ray absorption data, the high-energy XRD results also suggest that the Ga3+ ions are octahedrally coordinated with respect to oxygen. Antimicrobial studies demonstrated that the sample containing Ga3+ ions had significant activity against Staphylococcus aureus compared to the control
    corecore