65 research outputs found

    Chemical Probes that Competitively and Selectively Inhibit Stat3 Activation

    Get PDF
    Signal transducer and activator of transcription (Stat) 3 is an oncogene constitutively activated in many cancer systems where it contributes to carcinogenesis. To develop chemical probes that selectively target Stat3, we virtually screened 920,000 small drug-like compounds by docking each into the peptide-binding pocket of the Stat3 SH2 domain, which consists of three sites—the pY-residue binding site, the +3 residue-binding site and a hydrophobic binding site, which served as a selectivity filter. Three compounds satisfied criteria of interaction analysis, competitively inhibited recombinant Stat3 binding to its immobilized pY-peptide ligand and inhibited IL-6-mediated tyrosine phosphorylation of Stat3. These compounds were used in a similarity screen of 2.47 million compounds, which identified 3 more compounds with similar activities. Examination of the 6 active compounds for the ability to inhibit IFN-γ-mediated Stat1 phosphorylation revealed that 5 of 6 were selective for Stat3. Molecular modeling of the SH2 domains of Stat3 and Stat1 bound to compound revealed that compound interaction with the hydrophobic binding site was the basis for selectivity. All 5 selective compounds inhibited nuclear-to-cytoplasmic translocation of Stat3, while 3 of 5 compounds induced apoptosis preferentially of breast cancer cell lines with constitutive Stat3 activation. Thus, virtual ligand screening of compound libraries that targeted the Stat3 pY-peptide binding pocket identified for the first time 3 lead compounds that competitively inhibited Stat3 binding to its pY-peptide ligand; these compounds were selective for Stat3 vs. Stat1 and induced apoptosis preferentially of breast cancer cells lines with constitutively activated Stat3

    Novel role of microRNA146b in promoting mammary alveolar progenitor cell maintenance

    Get PDF
    In this report, we have shown that miR146b promotes the maintenance of pregnancy-derived mammary luminal alveolar progenitors. MiR146b expression was significantly higher in the mammary glands of pregnant and lactating mice than in virgin mice. Furthermore, miR146b levels were significantly higher in mouse mammary glands exposed to the sex hormones, estrogen and progesterone, compared with those of untreated control animals. Pregnancy-derived primary mouse mammary epithelial cells in which miR146b was knocked down showed a significant reduction in the number of hollow acinar organoid structures formed on three-dimensional Matrigel and in β-casein expression. This demonstrates that miR146b promotes the maintenance of pregnancy-derived mammary luminal alveolar progenitors. It has been shown that mouse mammary luminal progenitors give rise to hollow organoid structures, whereas solid organoid structures are derived from stem cells. Among several miR146b targets, miR146b knockdown resulted in preferential STAT3β overexpression. In the primary mouse mammary epithelial cells, overexpression of STAT3β isoform caused mammary epithelial cell death and a significant reduction in β-casein mRNA expression. Therefore, we conclude that during pregnancy miR146b is involved in luminal alveolar progenitor cell maintenance, at least partially, by regulating STAT3β

    Prevention of Hypovolemic Circulatory Collapse by IL-6 Activated Stat3

    Get PDF
    Half of trauma deaths are attributable to hypovolemic circulatory collapse (HCC). We established a model of HCC in rats involving minor trauma plus severe hemorrhagic shock (HS). HCC in this model was accompanied by a 50% reduction in peak acceleration of aortic blood flow and cardiomyocyte apoptosis. HCC and apoptosis increased with increasing duration of hypotension. Apoptosis required resuscitation, which provided an opportunity to intervene therapeutically. Administration of IL-6 completely reversed HCC, prevented cardiac dysfunction and cardiomyocyte apoptosis, reduced mortality 5-fold and activated intracardiac signal transducer and activator of transcription (STAT) 3. Pre-treatment of rats with a selective inhibitor of Stat3, T40214, reduced the IL-6-mediated increase in cardiac Stat3 activity, blocked successful resuscitation by IL-6 and reversed IL-6-mediated protection from cardiac apoptosis. The hearts of mice deficient in the naturally occurring dominant negative isoform of Stat3, Stat3β, were completely resistant to HS-induced apoptosis. Microarray analysis of hearts focusing on apoptosis related genes revealed that expression of 29% of apoptosis related genes was altered in HS vs. sham rats. IL-6 treatment normalized the expression of these genes, while T40214 pretreatment prevented IL-6-mediated normalization. Thus, cardiac dysfunction, cardiomyocyte apoptosis and induction of apoptosis pathway genes are important components of HCC; IL-6 administration prevented HCC by blocking cardiomyocyte apoptosis and induction of apoptosis pathway genes via Stat3 and warrants further study as a resuscitation adjuvant for prevention of HCC and death in trauma patients

    IL-6-Mediated Activation of Stat3α Prevents Trauma/Hemorrhagic Shock-Induced Liver Inflammation

    Get PDF
    Trauma complicated by hemorrhagic shock (T/HS) is the leading cause of morbidity and mortality in the United States for individuals under the age of 44 years. Initial survivors are susceptible to developing multiple organ failure (MOF), which is thought to be caused, at least in part, by excessive or maladaptive activation of inflammatory pathways. We previously demonstrated in rodents that T/HS results in liver injury that can be prevented by IL-6 administration at the start of resuscitation; however, the contribution of the severity of HS to the extent of liver injury, whether or not resuscitation is required, and the mechanism(s) for the IL-6 protective effect have not been reported. In the experiments described here, we demonstrated that the extent of liver inflammation induced by T/HS depends on the duration of hypotension and requires resuscitation. We established that IL-6 administration at the start of resuscitation is capable of completely reversing liver inflammation and is associated with increased Stat3 activation. Global assessment of the livers showed that the main effect of IL-6 was to normalize the T/HS-induced inflammation transcriptome. Pharmacological inhibition of Stat3 activity within the liver blocked the ability of IL-6 to prevent liver inflammation and to normalize the T/HS-induced liver inflammation transcriptome. Genetic deletion of a Stat3β, a naturally occurring, dominant-negative isoform of the Stat3, attenuated T/HS-induced liver inflammation, confirming a role for Stat3, especially Stat3α, in preventing T/HS-mediated liver inflammation. Thus, T/HS-induced liver inflammation depends on the duration of hypotension and requires resuscitation; IL-6 administration at the start of resuscitation reverses T/HS-induced liver inflammation, through activation of Stat3α, which normalized the T/HS-induced liver inflammation transcriptome

    Methylsulfonylmethane Suppresses Breast Cancer Growth by Down-Regulating STAT3 and STAT5b Pathways

    Get PDF
    Breast cancer is the most aggressive form of all cancers, with high incidence and mortality rates. The purpose of the present study was to investigate the molecular mechanism by which methylsulfonylmethane (MSM) inhibits breast cancer growth in mice xenografts. MSM is an organic sulfur-containing natural compound without any toxicity. In this study, we demonstrated that MSM substantially decreased the viability of human breast cancer cells in a dose-dependent manner. MSM also suppressed the phosphorylation of STAT3, STAT5b, expression of IGF-1R, HIF-1α, VEGF, BrK, and p-IGF-1R and inhibited triple-negative receptor expression in receptor-positive cell lines. Moreover, MSM decreased the DNA-binding activities of STAT5b and STAT3, to the target gene promoters in MDA-MB 231 or co-transfected COS-7 cells. We confirmed that MSM significantly decreased the relative luciferase activities indicating crosstalk between STAT5b/IGF-1R, STAT5b/HSP90α, and STAT3/VEGF. To confirm these findings in vivo, xenografts were established in Balb/c athymic nude mice with MDA-MB 231 cells and MSM was administered for 30 days. Concurring to our in vitro analysis, these xenografts showed decreased expression of STAT3, STAT5b, IGF-1R and VEGF. Through in vitro and in vivo analysis, we confirmed that MSM can effectively regulate multiple targets including STAT3/VEGF and STAT5b/IGF-1R. These are the major molecules involved in tumor development, progression, and metastasis. Thus, we strongly recommend the use of MSM as a trial drug for treating all types of breast cancers including triple-negative cancers

    Reduced Slow-Wave Sleep Is Associated with High Cerebrospinal Fluid A beta 42 Levels in Cognitively Normal Elderly

    Get PDF
    Study Objectives: Emerging evidence suggests a role for sleep in contributing to the progression of Alzheimer disease (AD). Slow wave sleep (SWS) is the stage during which synaptic activity is minimal and clearance of neuronal metabolites is high, making it an ideal state to regulate levels of amyloid beta (Aβ). We thus aimed to examine relationships between concentrations of Aβ42 in the cerebrospinal fluid (CSF) and measures of SWS in cognitively normal elderly subjects. Methods: Thirty-six subjects underwent a clinical and cognitive assessment, a structural MRI, a morning to early afternoon lumbar puncture, and nocturnal polysomnography. Correlations and linear regression analyses were used to assess for associations between CSF Aβ42 levels and measures of SWS controlling for potential confounders. Resulting models were compared to each other using ordinary least squared linear regression analysis. Additionally, the participant sample was dichotomized into “high” and “low” Aβ42 groups to compare SWS bout length using survival analyses. Results: A significant inverse correlation was found between CSF Aβ42 levels, SWS duration and other SWS characteristics. Collectively, total SWA in the frontal lead was the best predictor of reduced CSF Aβ42 levels when controlling for age and ApoE status. Total sleep time, time spent in NREM1, NREM2, or REM sleep were not correlated with CSF Aβ42. Conclusions: In cognitively normal elderly, reduced and fragmented SWS is associated with increases in CSF Aβ42, suggesting that disturbed sleep might drive an increase in soluble brain Aβ levels prior to amyloid deposition

    Obstructive Sleep Apnea Severity Affects Amyloid Burden in Cognitively Normal Elderly. A Longitudinal Study

    Get PDF
    Rationale: Recent evidence suggests that obstructive sleep apnea (OSA) may be a risk factor for developing mild cognitive impairment and Alzheimer’s disease. However, how sleep apnea affects longitudinal risk for Alzheimer’s disease is less well understood. Objectives: To test the hypothesis that there is an association between severity of OSA and longitudinal increase in amyloid burden in cognitively normal elderly. Methods: Data were derived from a 2-year prospective longitudinal study that sampled community-dwelling healthy cognitively normal elderly. Subjects were healthy volunteers between the ages of 55 and 90, were nondepressed, and had a consensus clinical diagnosis of cognitively normal. Cerebrospinal fluid amyloid β was measured using ELISA. Subjects received Pittsburgh compound B positron emission tomography scans following standardized procedures. Monitoring of OSA was completed using a home sleep recording device. Measurements and Main Results: We found that severity of OSA indices (AHIall [F1,88 = 4.26; P < 0.05] and AHI4% [F1,87 = 4.36; P < 0.05]) were associated with annual rate of change of cerebrospinal fluid amyloid β42 using linear regression after adjusting for age, sex, body mass index, and apolipoprotein E4 status. AHIall and AHI4% were not associated with increases in ADPiB-mask (Alzheimer’s disease vulnerable regions of interest Pittsburg compound B positron emission tomography mask) most likely because of the small sample size, although there was a trend for AHIall (F1,28 = 2.96, P = 0.09; and F1,28 = 2.32, not significant, respectively). Conclusions: In a sample of cognitively normal elderly, OSA was associated with markers of increased amyloid burden over the 2-year follow-up. Sleep fragmentation and/or intermittent hypoxia from OSA are likely candidate mechanisms. If confirmed, clinical interventions for OSA may be useful in preventing amyloid build-up in cognitively normal elderly

    Mouse Chromosome 11

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46996/1/335_2004_Article_BF00648429.pd

    Cytokine-dependent granulocytic differentiation: Regulation of proliferative and differentiative responses in a murine progenitor cell line

    No full text
    Human granulocyte colony stimulating factor (G-CSF) can support the survival and short term proliferation of the interleukin 3 (IL 3)-dependent diploid murine hemopoietic progenitor cell line 32D C13. After 8 days in the presence of 30 U/ml of G-CSF and in the absence of IL 3, the great majority of 32D C13 cells becomes positive for myeloperoxidase (a marker that appears at the promyelocytic stage of the granulocytic lineage) and progressively differentiates into lactoferrin-containing neutrophilic granulocytes. Myeloperoxidase mRNA rapidly increases after 24 to 48 hr of treatment with G-CSF, peaks at day 6 and is no longer detectable at day 9 and 12, paralleling the appearance of myeloperoxidase-positive promyelocytes and myelocytes in the culture. After 12 days, 100% of the cells terminally differentiate, and clonogenic assays in IL 3-containing semisolid media indicate that the whole population has irreversibly lost proliferative capability. By using varying concentrations of both murine IL 3 and recombinant human G-CSF, the cultures develop an heterogeneous population of cells representing all the differentiation stages of the myeloid lineage, and the relative ratios of immature proliferating precursors and terminally differentiated cells present in the cultures can be modulated by modifying the concentrations of IL 3 or recombinant human G-CSF. Isobolic curves indicate that IL 3 and G-CSF have an antagonistic effect on the proliferation of 32D C13 cells. Thus, these cells represent a simplified in vitro model of normal granulocytic differentiation whose extent may be modulated completely in the presence of serum by two well-defined growth and differentiation factors: IL 3 and G-CSF
    corecore