553 research outputs found

    Performance assessment of tariff-based air source heat pump load shifting in a UK detached dwelling featuring phase change-enhanced buffering

    Get PDF
    Using a detailed building simulation model, the amount of thermal buffering, with and without phase change material (PCM), needed to time-shift an air source heat pump's operation to off-peak periods, as defined by the UK 'Economy 10' tariff, was investigated for a typical UK detached dwelling. The performance of the buffered system was compared to the case with no load shifting and with no thermal buffering. Additionally, the load shifting of a population of buffered heat pumps to off-peak periods was simulated and the resulting change in the peak demand on the electricity network was assessed. The results from this study indicate that 1000 L of hot water buffering or 500 L of PCM-enhanced hot water buffering was required to move the operation of the heat pump fully to off-peak periods, without adversely affecting the provision of space heating and hot water for the end user. The work also highlights that buffering and load shifting increased the heat pump's electrical demand by over 60% leading to increased cost to the end user and increased CO2 emissions (depending on the electricity tariff applied and time varying CO2 intensity of the electricity generation mix, respectively). The study also highlights that the load-shifting of populations of buffered heat pumps wholly to off-peak periods using crude instruments such as tariffs increased the peak loading on the electrical network by over 50% rather than reducing it and that careful consideration is needed as to how the load shifting of a group of heat pumps is orchestrated

    Development and validation of detailed building, plant and controller modelling to demonstrate interactive behaviour of system components

    Get PDF
    As plant modelling becomes capable of more complexity and detailed resolution, new opportunities arise for the virtual evaluation of discrete plant components such as flow control and energy conversion devices, and controllers. Such objects are conventionally developed and tested at the prototype stage in a laboratory environment. Designers now seek to use modelling technology to extend their understanding from limited laboratory test results to full building and plant system analysis. This paper describes the development of a modelling system, using ESP-r, for typical United Kingdom domestic house types with hydronic gas or oil fired central heating including radiator and underfloor heating systems, and with a variety of conventional or advanced control types. It demonstrates the ability of detailed building and plant modelling to reveal unexpected insights into how real control systems perform in combination with other plant items and in different building types, including estimation of their influence on annual energy consumption. Comparisons with measurements taken in test rooms confirm that the observed behaviour of controls is realised in practice. The authors conclude that the complex dynamic interactions that take place between the various elements that make up a real building energy system have an important influence on its overall energy performance, revealing causes of variance that cannot be identified by laboratory testing alone, or by simplistic energy assessment tools

    The Use of Bone Morphogenetic Protein in the Intervertebral Disk Space in Minimally Invasive Transforaminal Lumbar Interbody Fusion

    Get PDF
    Study Design: Retrospective Cohort. Objective: The objective of this study was to characterize one surgeon’s experience over a 10-year period using rhBMP-2 in the disk space for minimally invasive transforaminal lumbar interbody fusion (MIS TLIF). Summary of Background Data: MIS TLIF has been utilized as a technique for decreasing patients’ immediate postoperative pain, decreasing blood loss, and shortened hospital stays. Effectiveness and complications of rhBMP-2’s use in the disk space is limited because of its off-label status. Methods: Retrospective analysis of consecutive MIS TLIFs performed by senior author between 2004 and 2014. rhBMP-2 was used in the disk space in all cases. Patients were stratified based on the dose of rhBMP-2 utilized. Patients had 9 to 12 month computerized tomography scan to evaluate for bony fusion and continued follow-up for 18 months. Results: A total of 688 patients underwent a MIS TLIF. A medium kit of rhBMP-2 was utilized in 97 patients, and small kit was used in 591 patients. Fusion rate was 97.9% and this was not different between the 2 groups with 96/97 patients fusing in the medium kit group and 577/591 patients fusing in the small kit group. Five patients taken back to the operating room for symptomatic pseudoarthrosis, 4 reoperated for bony hyperostosis, and 10 radiographic pseudoarthroses that did not require reoperation. A statistically significant difference in the rate of foraminal hyperostosis was found when using a medium sized kit of rhBMP-2 was 4.12% (4/97 patients), compared with a small kit (0/591 patients, P=0.0004). Conclusions: Utilization of rhBMP-2 in an MIS TLIF leads to high fusion rate (97.9%), with an acceptable complication profile. The development of foraminal hyperostosis is a rare complication that only affected 0.6% of patients, and seems to be a dose related complication, as this complication was eliminated when a lower dose of rhBMP-2 was utilized

    Association of Canine Osteosarcoma and Monocyte Phenotype and Chemotactic Function

    Get PDF
    BACKGROUND: Monocytes/macrophages are likely key cells in immune modulation in dogs with osteosarcoma (OSA). Increased peripheral monocyte counts are negatively correlated with shorter disease-free intervals in dogs with OSA. Understanding the monocyte/macrophage's modulatory role in dogs with OSA can direct further studies in immunotherapy development for OSA. HYPOTHESIS/OBJECTIVES: That OSA evades the immune response by down-regulating monocyte chemokine receptor expression and migratory function, and suppresses host immune responses. ANIMALS: Eighteen dogs with OSA that have not received definitive treatment and 14 healthy age-matched controls METHODS: Clinical study-expression of peripheral blood monocyte cell surface receptors, monocyte mRNA expression and cytokine secretion, monocyte chemotaxis, and survival were compared between clinical dogs with OSA and healthy control dogs. RESULTS: Cell surface expression of multiple chemokine receptors is significantly down-regulated in peripheral blood monocytes of dogs with OSA. The percentage expression of CCR2 (median 58%, range 2-94%) and CXCR2 expression (median 54%, range 2-92%) was higher in control dogs compared to dogs with OSA (CCR2 median 29%, range 3-45%, P = 0.0006; CXCR2 median 23%, range 0.2-52%, P = 0.0007). Prostaglandin E2 (PGE2 ) (OSA, median 347.36 pg/mL, range 103.4-1268.5; control, 136.23 pg/mL, range 69.93-542.6, P = .04) and tumor necrosis factor-alpha (TNF-α) (P = .02) levels are increased in OSA monocyte culture supernatants compared to controls. Peripheral blood monocytes of dogs with OSA exhibit decreased chemotactic function when compared to control dogs (OSA, median 1.2 directed to random migration, range 0.8-1.25; control, 1.6, range of 0.9-1.8, P = .018). CONCLUSIONS AND CLINICAL IMPORTANCE: Dogs with OSA have decreased monocyte chemokine receptor expression and monocyte chemotaxis, potential mechanisms by which OSA might evade the immune response. Reversal of monocyte dysfunction using immunotherapy could improve survival in dogs with OSA

    Institutional boundaries and the challenges of aligning science advice and policy dynamics: the UK and Canada in the time of COVID-19

    Get PDF
    This comparison of institutions of science advice during COVID-19 between the Westminster systems of England/UK and Ontario/Canada focuses on the role of science in informing public policy in two central components of the response to the pandemic: the adoption of non-pharmaceutical interventions (NPIs) and the procuring of vaccines. It compares and contrasts established and purpose-built bodies with varying degrees of independence from the political executive, and shows how each attempted to manage the tensions between scientific and governmental logics of accountability as they negotiated the boundary between science and policy. It uses the comparison to suggest potential lessons about the relative merits and drawbacks of different institutional arrangements for science advice to governments in an emergency

    Considering the impact of situation-specific motivations and constraints in the design of naturally ventilated and hybrid buildings

    Get PDF
    A simple logical model of the interaction between a building and its occupants is presented based on the principle that if free to do so, people will adjust their posture, clothing or available building controls (windows, blinds, doors, fans, and thermostats) with the aim of achieving or restoring comfort and reducing discomfort. These adjustments are related to building design in two ways: first the freedom to adjust depends on the availability and ease-of-use of control options; second the use of controls affects building comfort and energy performance. Hence it is essential that these interactions are considered in the design process. The model captures occupant use of controls in response to thermal stimuli (too warm, too cold etc.) and non-thermal stimuli (e.g. desire for fresh air). The situation-specific motivations and constraints on control use are represented through trigger temperatures at which control actions occur, motivations are included as negative constraints and incorporated into a single constraint value describing the specifics of each situation. The values of constraints are quantified for a range of existing buildings in Europe and Pakistan. The integration of the model within a design flow is proposed and the impact of different levels of constraints demonstrated. It is proposed that to minimise energy use and maximise comfort in naturally ventilated and hybrid buildings the designer should take the following steps: 1. Provide unconstrained low energy adaptive control options where possible, 2. Avoid problems with indoor air quality which provide motivations for excessive ventilation rates, 3. Incorporate situation-specific adaptive behaviour of occupants in design simulations, 4. Analyse the robustness of designs against variations in patterns of use and climate, and 5. Incorporate appropriate comfort standards into the operational building controls (e.g. BEMS)

    Comparison between Coreless and Yokeless Stator Designs in Fully-Superconducting Propulsion Motors

    Get PDF
    Hybrid electric propulsion could be the solution to the ambitious environmental targets of the aerospace industry. Fully-superconducting machines have the potential to deliver the step-change in specific torque, power, and efficiency capabilities required for large civil transport aircraft applications. However, fully-superconducting machines are still in their infancy. This article investigates the electromagnetic design of two different stator design concepts for an ac fully-superconducting machine for an aerospace distributed fan motor application. A benchmark aerospace specification of 1 MW was chosen and the design of a conventional permanent-magnet machine was used to assess the performance of the two equivalent fully-superconducting ac motor designs. Following the guidelines from an experimental study of the losses in a small ac stator prototype with MgB 2 coils, a fully-superconducting air-cored stator design and a new yokeless stator design are proposed. Both ac superconducting machine designs use superconducting bulk magnets mounted on a rotor core and an MgB 2 superconducting stator winding. This article discusses the key design issues of the two stator layouts in relation to the current aerospace targets for efficiency and power density. </p

    An agrogeophysical modelling framework for the detection of soil compaction spatial variability due to grazing using field-scale electromagnetic induction data.

    Get PDF
    Soil compaction is a regarded as a major environmental and economical hazard, degrading soils across the world. Changes in soil properties due to compaction are known to lead to decrease in biomass and increase in greenhouse gas emissions, nutrient leaching and soil erosion. Quantifying adverse impacts of soil compaction and developing strategies for amelioration relies on an understanding of soil compaction extent and temporal variability. The main indicators of soil compaction (i.e., reduction of pore space, increase in bulk density and decrease in soil transport properties) are relatively easy to quantify in laboratory conditions but such traditional point-based methods offer little information on soil compaction extent at the field scale. Recently, geophysical methods have been proposed to provide non-invasive information about soil compaction. In this work, we developed an agrogeophysical modelling framework to help address the challenges of characterizing soil compaction across grazing paddocks using electromagnetic induction (EMI) data. By integrative modelling of grazing, soil compaction, soil processes and EMI resistivity anomalies, we demonstrate how spatial patterns of EMI observations can be linked to management leading to soil compaction and concurrent modifications of soil functions. The model was tested in a dairy farm in the midlands of Ireland that has been grazed for decades and shows clear signatures of grazing-induced compaction. EMI data were collected in the summer of 2021 and autumn of 2022 under dry and wet soil moisture conditions, respectively. For both years, we observed decreases of apparent electrical resistivity at locations that with visible signatures of compaction such as decreased vegetation and water ponding (e.g., near the water troughs and gates). A machine learning algorithm was used to cluster EMI data with three unique cluster signatures assumed to be representative of heavy, moderately, and non-compacted field zones. We conducted 1D process-based simulations corresponding to non-compacted and compacted soils. The modelled EMI signatures agree qualitatively and quantitatively with the measured EMI data, linking decreased electrical resistivities to zones that were visibly compacted. By providing a theoretical framework based on mechanistic modelling of soil management and compaction, our work may provide a strategy for utilizing EMI data for detection of soil degradation due to compaction

    Co-designing the next generation of home energy management systems with lead-users

    Get PDF
    Home energy management systems are widely promoted as essential components of future low carbon economies. It is argued in this paper that assumptions surrounding their deployment, and the methods used to design them, emerge from discredited models of people and energy. This offers an explanation for why their field trial performance is so inconsistent. A first of a kind field trial is reported. Three eco communities took part in a comprehensive participatory design exercise as lead users. The challenge was to help users synchronise their energy use behaviours with the availability of locally generated renewable energy sources. To meet this aim, a set of highly novel Home Energy Management interfaces were co-designed and tested. Not only were the designs radically different to the norm, but they also yielded sustained user engagement over a six-month follow-up period. It is argued that user-centred design holds the key to unlocking the energy saving potential of new domestic technologies, and this study represents a bold step in that direction
    • …
    corecore