1,372 research outputs found

    Simulation of an 1857-like Mw 7.9 San Andreas Fault Earthquake and the Response of Tall Steel Moment Frame Buildings in Southern California – A Prototype Study

    Get PDF
    In 1857, an earthquake of magnitude 7.9 occurred on the San Andreas fault, starting at Parkfield and rupturing in a southeasterly direction for more than 360 km. Such a unilateral rupture produces significant directivity toward the San Fernando and Los Angeles basins. The strong shaking in the basins due to this earthquake would have had significant long-period content (2-8 s), and the objective of this study is to quantify the impact of such an earthquake on two 18-story steel moment frame building models, hypothetically located at 636 sites on a 3.5 km grid in southern California. End-to-end simulations include modeling the source and rupture of a fault at one end, numerically propagating the seismic waves through the earth structure, simulating the damage to engineered structures and estimating the economic impact at the other end using high-performance computing. In this prototype study, we use an inferred finite source model of the magnitude 7.9, 2002 Denali fault earthquake in Alaska, and map it onto the San Andreas fault with the rupture originating at Parkfield and propagating southward over a distance of 290 km. Using the spectral element seismic wave propagation code, SPECFEM3D, we simulate an 1857-like earthquake on the San Andreas fault and compute ground motions at the 636 analysis sites. Using the nonlinear structural analysis program, FRAME3D, we subsequently analyze 3-D structural models of an existing tall steel building designed using the 1982 Uniform Building Code (UBC), as well as one designed according to the 1997 UBC, subjected to the computed ground motion at each of these sites. We summarize the performance of these structural models on contour maps of peak interstory drift. We then perform an economic loss analysis for the two buildings at each site, using the Matlab Damage and Loss Analysis (MDLA) toolbox developed to implement the PEER loss-estimation methodology. The toolbox includes damage prediction and repair cost estimation for structural and non-structural components and allows for the computation of the mean and variance of building repair costs conditional on engineering demand parameters (i.e. inter-story drift ratios and peak floor accelerations). Here, we modify it to treat steel-frame high-rises, including aspects such as mechanical, electrical and plumbing systems, traction elevators, and the possibility of irreparable structural damage. We then generate contour plots of conditional mean losses for the San Fernando and the Los Angeles basins for the pre-Northridge and modern code-designed buildings, allowing for comparison of the economic effects of the updated code for the scenario event. In principle, by simulating multiple seismic events, consistent with the probabilistic seismic hazard for a building site, the same basic approach could be used to quantify the uncertain losses from future earthquakes

    Hard x-ray photon-in-photon-out spectroscopy with lifetime resolution – of XAS, XES, RIXSS and HERFD

    No full text
    Spectroscopic techniques that aim to resolve the electronic configuration and local coordination of a central atom by detecting inner-shell radiative decays following photoexcitation using hard X-rays are presented. The experimental setup requires an X-ray spectrometer based on perfect crystal Bragg optics. The possibilities arising from non-resonant (X-Ray Emission Spectroscopy - XES) and resonant excitation (Resonant Inelastic X-Ray Scattering Spectroscopy – RIXSS, High-Energy-Resolution Fluorescence Detected (HERFD) XAS) are discussed when the instrumental energy broadenings of the primary (beamline) monochromator and the crystal spectrometer for x-ray emission detection are on the order of the core hole lifetimes of the intermediate and final electronic states. The small energy bandwidth in the emission detection yields line-sharpened absorption features. In transition metal compounds, electron-electron interactions as well as orbital splittings and fractional population can be revealed. Combination with EXAFS spectroscopy enables to extent the k-range beyond unwanted absorption edges in the sample that limit the EXAFS range in conventional absorption spectroscopy

    Decoupling Graphene from SiC(0001) via Oxidation

    Full text link
    When epitaxial graphene layers are formed on SiC(0001), the first carbon layer (known as the "buffer layer"), while relatively easy to synthesize, does not have the desirable electrical properties of graphene. The conductivity is poor due to a disruption of the graphene pi-bands by covalent bonding to the SiC substrate. Here we show that it is possible to restore the graphene pi-bands by inserting a thin oxide layer between the buffer layer and SiC substrate using a low temperature, CMOS-compatible process that does not damage the graphene layer

    A risk profile for identifying community-dwelling elderly with a highrisk of recurrent falling: results of a 3-year prospective study

    Get PDF
    Introduction: The aim of the prospective study reported here was to develop a risk profile that can be used to identify community-dwelling elderly at a high risk of recurrent falling. Materials and methods: The study was designed as a 3-year prospective cohort study. A total of 1365 community-dwelling persons, aged 65 years and older, of the population-based Longitudinal Aging Study Amsterdam participated in the study. During an interview in 1995/1996, physical, cognitive, emotional and social aspects of functioning were assessed. A follow-up on the number of falls and fractures was conducted during a 3-year period using fall calendars that participants filled out weekly. Recurrent fallers were identified as those who fell at least twice within a 6-month period during the 3-year follow-up. Results: The incidence of recurrent falls at the 3-year follow-up point was 24.9% in women and 24.4% in men. Of the respondents, 5.5% reported a total of 87 fractures that resulted from a fall, including 20 hip fractures, 21 wrist fractures and seven humerus fractures. Recurrent fallers were more prone to have a fall-related fracture than those who were not defined as recurrent fallers (11.9% vs. 3.4%; OR: 3.8; 95% CI: 2.3-6.1). Backward logistic regression analysis identified the following predictors in the risk profile for recurrent falling: two or more previous falls, dizziness, functional limitations, weak grip strength, low body weight, fear of falling, the presence of dogs/cats in the household, a high educational level, drinking 18 or more alcoholic consumptions per week and two interaction terms (high educationx18 or more alcohol consumptions per week and two or more previous falls x fear of falling) (AUC=0.71). Discussion: At a cut-off point of 5 on the total risk score (range 0-30), the model predicted recurrent falling with a sensitivity of 59% and a specificity of 71%. At a cut-off point of 10, the sensitivity and specificity were 31% and 92%, respectively. A risk profile including nine predictors that can easily be assessed seems to be a useful tool for the identification of community-dwelling elderly with a high risk of recurrent falling. © International Osteoporosis Foundation and National Osteoporosis Foundation 2006
    • …
    corecore