Proceedings of the

ELISA workshop

Evolution of Large-scale Industrial Software Evolution

Tuesday, 23 September 2003

Royal Netherlands Academy of Arts and Sciences
Amsterdam, The Netherlands
co-located with ICSM 2003

Organised by: Tom Mens, Juan F. Ramil, Michael W. Godfrey, Brian Down

An official activity of the ESF RELEASE research network

Identifying Problems with Legacy Software
Preliminary Findings of the ARRIBA Project *

Isabel Michiels!, Dirk Deridder!, Herman Tromp?, and Andy Zaidman®

* Programming Technology Lab, Vrije Universiteit Brussel
Pleinlaan, 2 , 1050 Brussel, Belgium
{Isabel.Michiels,Dirk.Deridder}@vub.ac.be
? Universiteit Gent, INTEC, Sint-Pietersnieuwstraat 41
9000 Gent, Belgium - Herman . Tromp@UGent .be
% Universiteit Antwerpen, Lab On Re-Engineering, Middelheimlaan 1
B-2020 Antwerpen, Belgium - Andy . Zaidman@ua.ac.be

Abstract. : The goal of this experience report is to identify some of the key prob-
lems of today’s enterprises that have to deal with managing their large business
critical software systems. Our motivation to do so is based on preliminary find-
ings from the'’ ARRIBA project. The work we present here form our preliminary
conclusions of the first 6 months of the project, where we visited some of these
enterprises, to identify their main needs of today.

Keywords: Legacy Systems, EAL restructuring, COBOL

1 Introduction

The dynamics of modern business applications is characterized by a constant need for
integration and restructuring and this at a much larger scale than ever before. This is
often driven by the physical integration and restructuring of companies, which conse-
quently results in a need to-alter their ICT infrastructures to accomodate the changed
business activities. Possible examples are the redefinition of a corporate strategy, a
corporate take-over, a conversion of the existing infrastructure from a data process-
ing model towards a service oriented model, etc ...

This continuous modification process will finally result in a situation where several soft-
ware systems have to coliaborate in a way that was never (or could never have been)
anticipated in their original design.

Such large-scale software applications are often referred to as legacy applications. In
this report we will adhere to the following definition ! of a legacy application [13]:

A legacy system is an operational system that has been designed, implemented
and installed in a radically different environment than imposed by the current
ICT strategy

* This research is funded by the Institute for the Promotion of Innovation by Science and Tech-
nology in Flanders IWT)
! Other definitions are in use [2]

160

When burdened with the task to enable the collaboration of these separate systems,
having access to a rich collection of documentation (preferably also feedback from the
original designers/ programmers of the system) is imperative. Unfortunately, in all but
a few cases, this documentation remains non-existing or has become completely out of
date due 1o evolution of the software system. Generally speaking, one could state that
the only true description of the information structures and the implemented behaviour
is locked up in the running software system itself. Hence to obtain a sufficient (active)
set of documentation one will have to turn to analysing the available static (e.g. source
code, data models) and dynamic (e.g. runtime event traces) artifacts of the system.
There are five ways to handle a legacy situation in which a change is imposed :

1. Develop a new system from scratch

2. Refactor - rewrite portions of the system preserving its existing behavior
3. Porting the system to another platform

4. Migration strategy with partial reuse of the existing system

As we have seen in our first findings, a solution is chosen by doing a combination
of the four above methods.
In this report we provide a preliminary overview of a number of encountered problems
when confronted with legacy software. We have based ourselves on the results of visit-
ing three major Belgian enterprises in the context of a research project called ARRIBA.
In the following section, we will briefly describe the ARRIBA project. Then we will
present our first findings in section 3 and in section 4 we will point out future work for
the project. We will then round up in section 5 with our conclusion.

2 The ARRIBA project

The ARRIBA project is a generic research project funded by the IWT, Flanders . The
project started in October 2002 and will allow 6 researchers to work on the project for
4 years 2,

The aim of ARRIBA is to provide a methodology and its associated lightweight tools in
order to support the integration of disparate business applications that have not neces-
sarily been designed to coexist. Inspiration comes from real concerns that are the result
of an investigative effort on the part of some of the research partners in this consortium.
The object of this investigation is the identification of mainstream ICT problems within
a representative forum of Belgian enterprises (large and small) that rely on information
technology for their critical business activities. Part of what we propose to investigate
is covered by the newly named discipline of Enterprise Application Integration (EAI);
another part is covered by re(verse) engineering; however, our ambitions reach further.
At the roots of the ARRIBA project are two driving forces. On the one hand we have a
consortium of research groups that have been active in the field of software engineering

* Institute for the Promotion of Innovation by Science and Technology in FlandersIWT -
htip//www.iwt.be

> ARRIBA: Architectural Resources for the Restructuring and Integration of Business Applica-
tions, see http://arriba.vub.ac.be

161

and more particularly in re(verse) engineering, software evolution and software archi-
tectures®. These groups have a fairly long-standing history of cooperation and they feel
confident that they can join forces and tackle the new and ambitious problem domain
targeted in the ARRIBA proposal.

On the other hand, we have the already mentioned and recently created forum of Bel-
gian enterprises interested in a joint initiative to identify generic problems and likewise
generic solutions plaguing their ICT base®. This forum has the form of a foundation
hosted by what could best be described as a collective spin-off of the five Flemish com-
puter science departments.

The academic partners together with the user committee (the first providing the content
of the ARRIBA project, the second providing the context) will guarantee the correct
identification of the problem setting and the proper channeling of the results to the
business world.

The user comumnittee of the ARRIBA project currently consists of 7 Belgian enterprises.
They form the steering group of the project: they regularly check if we tackle current
ICT problems and during the evolution of the project they will see whether our results
will be industrially applicable. The next section reports on the first findings based on
visits of part of the user committee members.

3 First Findings

During the first six months of ARRIBA, we visited 3 major Belgian enterprises: the
KBC group®, Banksys 7 and LCM [13] ®. As preparation for these visits, we prepared a
question list according to [5]. One of these visits was organized in a workshop format,
while the other two were more Q& A sessions based on presentations by the companies
In a later phase, other visits to other companies are planned.

In what follows, we have organized our findings into common themes:

The Mainframe Syndrome

All of these organisations depend heavily for their back-office on proven technology
and duplicate datacenters, which are essential for their critical business activities; this
is an environment strictly used for controlling processes to be able to ensure operational

* There are 3 Flemish academic partners involved: Vrije Universiteit Brussel (VUB), Univer-
siteit Gent (UG) and the Universiteit Antwerpen (UA) and two other European partners, UCL
in Louvan-La-Neuve, Belgium and SCG, Berne, Switzerland. The latter two play a supporting
role

® These Belgian enterprises are grouped in a User Committee currently consisting of 7 compa-
nies: Inno.com, KBC, LCM, Banksys, Toyota, KAVA and Pefa

5 KBC is a large banking company that holds three major product factories: banking, insurance
and marketing activities

" ‘Banksys is one of the most important providers of the infrastructure for electronic financial
transactions in Belgium

8 1.andsbond der Christelijke Mutualiteiten (L.CM) is"a large organisation responsible for the
redistribution of health care allowances, and offers also a number of related social services

162

performance.

In the front-office environment and end-user environment, UNIX-like systems and J2ER
application server systems are also used, They are not always considered to be fually
reliable, and therefore less suited to support their essential business operations. This
situation indicates that there is a serious resilience towards new and not yet proven
technology (hardware as well as software). The integration with the existing mainframe
environment also remains a very big issue [9, 10]. Previous efforts to migrate to a Mi-
crosoft technology-based system have proven to be unsuccessful, at least in the case of
LCM [13].

Organisation and Human Resources

Most organisations have a pretty strict and project-based organization which is clearly
reflected by the Human Resources setup. This adds considerably to their latency and
inability to adapt. Take as an example LCM: they have about 200 COBOL developers,
and (only) 4 or 5 Java-aware software engineers. It is clear that in such an environment
there will be a lot of resistance towards new developments (the systems are functioning
properly, aren’t they, so why change anything?). The previous point is reflected in the
structure of the organisation : separated business units, project driven work structure,
etc. [4] . A central authority to control major revitalisation efforts, to enforce architec-
tural consistency and provide a deployment policy is often missing or very difficult to
install.

Coding Standards and Techniques

In general, it is estimated that between 60 and 80 % of today’s operational code is
still written in COBOL [3, 1]. Some C or Java code is also present, but only in small
quantities. Knowledge about the systems is partly lost ‘and only -evident in the code
itself, e.g. people have left the company, documentation is very poor (and out of sync
with the current system) or not present. When validating the guality of these mainframe
COBOL applications, usually the 80/20 rule will manifest itself: 80% of the coding
problems are caused by 20% of the code (also known as The Pareto Principle) [8].
Regarding architectural issues, migration has been put forward as the main bottleneck of
the restructuring process; however we found that companies experience that integration
with new technologies is ‘much more important (and also more difficult). Take as an
example the introduction of new environments (like J2EE) for new applications: the
real challenge here is how to let these connect or communicate with the ofher COBOL
applications on the mainframe.

Data and Information

Large-scale software systems consequently also have to deal with large amounts of data.

- Unfortunately, in most legacy systems, the use of a Relational Database Management
System (RDBMS) is scarce. Proprietary flat file systems are still in use, but migration
to using an RDBMS system has received top priority.

163

In large organizations, a Corporate Data Model is hard to enforce. The reason for this is
simple: there is no central ownership of data or information items in use by these com-
panies. This often leads to a rapid growth of different information models, where every
part of the organization has its own view on that same information, with differences in
structure and even in the semantics of these information models. Take as an example
the concept of a customer: it is interpreted differently in other business units within
the company; a customer that buys something is very different from a cusiomer that
complains about the companies’ delivered products. So the quality of the data models
and the data itself, because of the lack of a responsible person, is far from guaranteed.
Also, a consistent view on the information between the business units themselves [14]
is missing. As a consequence, migrating the software and the information models be-
comes a real problem.

At the KBC for example, the use of a uniform data model cannot be enforced, but in-
stead they enforce a uniform message model. This means that they clearly specify the
syntax and semantics of messages that are sent between different software applications,
not the form of the data itself. In practice, this approach has proven to give very satis-
factory results.

Using Standard Packages

One of the possible solutions these companies bring forward to better structare their
applications is using standard ERP packages. However, this causes several problems
[12]. Experience proves that packages have a strong front-end (or presentation layer),
but a weak back-end for performance. On the other hand, some applications require the
use of certain packages since they implement international standards.

Security forms a large problem as well: it can be a conclusive reason for refusing the use
of a package. Another drawback of using packages is that they are expensive and some-
times do not have the functionality that is really needed. Customizing these packages
can be risky due to package updates; therefore a decision is made every time whether a
package should be bought or written from scratch.

Another issue is that the view of the package on the business domain does not map
directly to the real world, and the amount of work to be done for integrating these pack-
ages into the existing application is highly underestimated. Formulated otherwise: there
is a semantic gap between the “’standard” package and its existing information model;
and performing gap analysis is time-consuming.

Another open question that still remains is how to map the companies’ business process
model onto the ICT infrastructure of the predefined package.

Datawarehousing

Setting up datawarchousing activities is not a trivial thing to do: project-driven busi-
nesses (like the KBC) need to set-up a project first, mainly about collecting meta-data
information. Since this data is cross-cutting different business units, these projects are
difficult to ’sell’; because it is difficult to find 2 single business case for them. After all,
possible profit can only be shown after a while. Most extraction of meta-data is doue by
interviewing people: they are the most valuable sources of information. And although

most companies see the importance of datawarehousing, it is not really clear yet what
they will do with all the meta-data information,

Enterprise Application Integration (EAL)

This rather new domain dates from the mid-nineties [7, 11]. According to Linthicum
Enterprise Application Integration is [6]:

The unrestricted sharing of information between two or more enterprise ap-
plications. A set of technologies that allow the movement and exchange of in-
Jormation between different applications and business processes within and
between organisations.

At this moment there is a growing number of enterprises that try to use this, usually
under the form of standard EAI tools (at the KBC they use eGate, Tibco and some EAI
tools developed within the company). For KBC, they have been using this through a
business case since 1998. Problems that arise now for KBC mainly come from handling
different EAI tools at once: now it is almost impossible to go back to using only one tool
throughout all units within the company. Instead, the use of the tools is being extended,
according to the needs and applications, inside the growing domain of FAIL

The IT Development Process

The IT Development process is usually well-defined within a company policy and a
lot of attention is paid to it. However, as mentioned before, it is not technology-driven,
which has as a downside that projects that do not have a business case (that are hard to
sell within the company), cannot be realized.

Developing and collecting documentation is, in some cases, part of the predefined soft-
ware development process of the company. Unfortunately it is too often neglected for
obvious reasons (e.g. time consuming, limited budget). So there is documentation avail-
able, but it is in most cases not up-to-date with the current software. So the source code
and the information models are often the only reliable source of documentation.

4 Future Work

Based on our first findings, we conclude that the first step for restructuring legacy ap-
plications is to understand and analyze the source code (we will call this Code Mining).
This can be accomplished by analyzing static as well as dynamic information and tak-
ing into account the data and information models as well.

The second step could then be to identify lightweight tools that can, using the results of
the analysis of the first step, automatically extract architectural information, documen-
tation or domain knowledge out of the source code and data models. A last step could
then be to incorporate changes into the extracted artifacts and propagate these back into
the code (forward engineering).

Future tracks will emphasize more on COBOL and its environment and on how to use
dynamic information as well:

165

Emphasis on COBOL code and its environment Since the companies we presented be-
fore are willing to let us experiment on their code, we will concentrate in a first phase
on studying COBOL code and its environment. We would like to apply some of the
already known tools (that were developed in the labs of one of the academic partners),
like SOUL ° or CodeCrawler 1°. Since these tools were not developed specifically for
COBOL, we first have to see how we can adapt them to use them within this context.
We have started to work on transforming COBOL into a more portable platform: we
mtend to use XML as a portable format for source code representation. We can then
manipulate XML documents inside other language platforms. In a second phase (for-
ward engineering), we could try to manipulate this XML representation (either directly
on the DOM model, either through XSLT) and retransform it back to COBOL to actu-
ally restructure the code. '

In the near future, we would also like to investigate in which way we can reuse tech-
niques developed for object-oriented systems, like code metrics, code refactorin g.... for
restructuring (and enhancing code quality) non-OO legacy systems.

Using Dynamic Information in the context of reverse engineering, static analysis is the
term used for a reengineering effort based solely on the information that can be found in
the source code of the software. In many cases this analysis is computationally very in-
tensive and doesn’t give the whole picture. Dynamic analysis uses information collected
during the execution of the program. The information we collect is called an event trace
and consists of a list of method invocations, procedure calls, object instantiations, etc.
A clear advantage of using dynamic analysis is that the information you have is always
correct with respect to the execution of the program, but a clear disadvantage is the
amount of information you have to wade through. Research in this direction will re-
volve around finding event sequences that logically belong together in the execution of
the program, i.e. a clustering operation. These clusters can then be abstracted to patterns
that point to key functionality in the software.

5 Conclusion

In this experience report, we have identified some of our preliminary findings of the
ARRIBA project, which aims at providing lightweight methodologies and tools for the
integration of software entities that have not necessarily been designed to cooperate.
During the first phase of the project we visited 3 out of 7 enterprises that are part of
the project’s user committee, and we presented some surprising commonalities found
in their current ICT restructuring schemes. :

Finally, we ended by pointing out our future work for this ARRIBA project, with as next
intermediate goal to experiment with some mainframe applications (witten in COBOL)
and applying some already known lightweight tools to see what we can achieve.

In the near future, we will continue with the company visits.

* Smalitalk Open Unification Language - hitp://prog. vub.ac be/research/DMP/soul/soul2 html
% see http://www.iam.unibe.ch/ lanza/CodeCrawler/ codecrawler.html

166

References

[N}

10.

11.

12.

13.

14.

. Aberdeen Group. Legacy applications: From cost management to transformation,

2003, Executive White Paper from Aberdeen Group, March 2003. Can be found at
http://www.aberdeen.com/2001 /research/03038126.asp.

. M. L. Brodie and M. Stonebraker. Migrating Legacy Systems - Gateways, Interfaces and the

Incremental Approach. Morgan Kaufmann Publishers, 1995.

. G.. D. Brown. Cobol: The failure that wasn’t. COBOLReport.com -

http://www.csis.ul.ie/COBOL/course/.

. 1.O. Coplien. Pattern Languages of Program Design, volume 1, chapter 14 - A Development

Process Generative Pattern Language. Addison-Wesley, May 1995.

. S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented Reengineering Patterns. Mor-

gan Kaufmann and DPunkt, 2002.

. D.’S. Linthicum. Enterprise Application Integration. Addison-Wesley, 1999,
. J.C. Lutz. EAI architecture patterns. In EAI Journal, March 2000.
A Pareto. The pareto principle or the 80:20 rule.

hitp://www.public.asu.edu/ dmuthua/pareto’s.principle.html.

.. Plakosh, S. Comella-Dorda, G. A. Lewis, P. R. H. Place, and R. C. Seacord. Maintaining

transactional context: A model problem. . Technical report, SEI, august 2001 CMU/SEI-
2001-TR-012 - ESC-TR-2001-012.

M. Stonebraker and J. M. Hellerstein. - Content integration for e-business. -In SIGMOD
Conference, 2001,

M. Themistocleous and 7. Irani. Evaluating and adopting application integration: The case
of a multinational petroleum company. In Proceedings of the 35th Hawaii International
Conference on System Sciences, 2002.

M. Themistocleous, Z. Irani, R. M. O'Keefe, and R. Paul. Erp problems and application
integration issues: An empirical survey. In Proceedings of the 34th Hawaii International
Conference on System Sciences, 2001.

H. Tromp and G. Hoffman. Evolution of legacy systems, strategic and technological issues,
based on a case. Paper also accepted to the workshop on Evolution of Large-Scale Industrial
Software Applications (ELISA), 23 September 2003, ICSM 2003.

K. Vandenborre, P. Heinckiens, G. Hoffman, and H. Tromp. Coherent enterprise information
modelling in practice. In Proceedings of 13th European-Japanese Conference on Informa-
tion Modeling and Knowledge Bases, Kitakyushu, Japan, June, 2003.

167

