646 research outputs found

    Wormholes and Naked Singularities in Brans-Dicke cosmology

    Full text link
    We perform analytical and numerical study of static spherically symmetric solutions in the context of Brans-Dicke-like cosmological model by Elizalde et al. with an exponential potential. In this model the phantom regime arises without the appearance of any ghost degree of freedom due to the specific form of coupling. For the certain parameter ranges the model contains a regular solution which we interpret as a wormhole in an otherwise dS Universe. We put several bounds on the parameter values: ω<0,α2/ω<105,22.7 ⁣ϕ0 ⁣25\omega<0 ,\,\, \alpha^2/|\omega|<10^{-5},22.7\lesssim\!\phi_0\!\lesssim25\,. The numerical solution could mimic the Schwarzschild one, so the original model is consistent with astrophysical and cosmological observational data. However differences between our solution and the Schwarzschild one can be quite large, so black hole candidate observations could probably place further limits on the ϕ0\phi_0 value.Comment: 20 pages, 6 figures, typos & errors correcte

    Spontaneous heavy cluster emission rates using microscopic potentials

    Get PDF
    The nuclear cluster radioactivities have been studied theoretically in the framework of a microscopic superasymmetric fission model (MSAFM). The nuclear interaction potentials required for binary cold fission processes are calculated by folding in the density distribution functions of the two fragments with a realistic effective interaction. The microscopic nuclear potential thus obtained has been used to calculate the action integral within the WKB approximation. The calculated half lives of the present MSAFM calculations are found to be in good agreement over a wide range of observed experimental data.Comment: 4 pages, 4 figure

    Observation of nuclei with energies 8-30 MeV per nucleon in the Earth's magnetosphere at the altitudes 350 KM

    Get PDF
    Observations of the flux of nuclei with an energy of IO MeV per nucleon on the Salyut-7 Station in September 1984 are presented. The observed flux is smaller by a factor of 50 than the flux detected in May, 1981

    New measurement of exotic decay of 225^{225}Ac by 14^{14}C emission

    Get PDF
    The branching ratio of 225^{225}Ac decay by emission of 14^{14}C was remeasured under improved experimental conditions by using a radioactive source produced at the ISOLDE mass-separator at CERN and a nuclear track detector technique. The result, B=λ14C/λα=(4.5±1.4)1012\lambda_{^{14}\textrm{C}} / \lambda_{\alpha} = (4.5 \pm 1.4) 10^{-12}, is consistent with the anomalously high value obtained in the 1993 experiment thus confirming the importance of nuclear structure effects in this exotic decay
    corecore