1,416 research outputs found

    Optimizing an array of antennas for cellular coverage from a high altitude platform

    Get PDF
    In a wireless communications network served by a high altitude platform (HAP) the cochannel interference is a function of the antenna beamwidth, angular separation and. sidelobe level. At the millimeter wave frequencies proposed for HAPs, an array of aperture type antennas on the platform is a practicable solution for serving the cells. We present a method for predicting cochannel interference based on curve-fit approximations for radiation patterns of elliptic beams which illuminate cell edges with optimum power, and a means of estimating optimum beamwidths for each cell of a regular hexagonal layout. The method is then applied to a 121 cell architecture. Where sidelobes are modeled As a flat floor at 40-dB below peak directivity, a cell cluster size of four yields carrier-to-interference ratios (CIRs), which vary from 15 dB at cell edges to 27 dB at cell centers. On adopting a cluster size of seven, these figures increase, respectively, to 19 and 30 dB. On reducing the sidelobe level, the. improvement in CIR can be quantified. The method also readily allows for regions of overlapping channel coverage to be shown

    Improving the system capacity of broadband services using multiple high-altitude platforms

    Get PDF
    A method of significantly improving the capacity of high-altitude platform (HAP) communications networks operating in the millimeter-wave bands is presented. It is shown how constellations of HAPs can share a common frequency allocation by exploiting the directionality of the user antenna. The system capacity of such constellations is critically affected by the minimum angular separation of the HAPs and the sidelobe level of the user antenna. For typical antenna beamwidths of approximately 5/spl deg/ an inter-HAP spacing of 4 km is sufficient to deliver optimum performance. The aggregate bandwidth efficiency is evaluated, both theoretically using the Shannon equation, and using practical modulation and coding schemes, for multiple HAP configurations delivering either single or multiple cells. For the user antenna beamwidths used, it is shown that capacity increases are commensurate with the increase in the number of platforms, up to 10 HAPs. For increases beyond this the choice of constellation strategy becomes increasingly important

    Quantum transport of two-dimensional Dirac fermions in SrMnBi2

    Full text link
    We report two-dimensional quantum transport in SrMnBi2_2 single crystals. The linear energy dispersion leads to the unusual nonsaturated linear magnetoresistance since all Dirac fermions occupy the lowest Landau level in the quantum limit. The transverse magnetoresistance exhibits a crossover at a critical field BB^* from semiclassical weak-field B2B^2 dependence to the high-field linear-field dependence. With increase in the temperature, the critical field BB^* increases and the temperature dependence of BB^* satisfies quadratic behavior which is attributed to the Landau level splitting of the linear energy dispersion. The effective magnetoresistant mobility μMR3400\mu_{MR}\sim 3400 cm2^2/Vs is derived. Angular dependent magnetoresistance and quantum oscillations suggest dominant two-dimensional (2D) Fermi surfaces. Our results illustrate the dominant 2D Dirac fermion states in SrMnBi2_2 and imply that bulk crystals with Bi square nets can be used to study low dimensional electronic transport commonly found in 2D materials like graphene.Comment: 5 papges, 4 figure

    High resolution miniature dilatometer based on AFM piezocantilever

    Full text link
    Thermal expansion, or dilation, is closely related to the specific heat, and provides useful information regarding material properties. The accurate measurement of dilation in confined spaces coupled with other limiting experimental environments such as low temperatures and rapidly changing high magnetic fields requires a new sensitive millimeter size dilatometer that has little or no temperature and field dependence. We have designed an ultra compact dilatometer using an atomic force microscope (AFM) piezoresistive cantilever as the sensing element and demonstrated its versatility by studying the charge density waves (CDWs) in alpha uranium to high magnetic fields (up to 31 T). The performance of this piezoresistive dilatometer was comparable to that of a titanium capacitive dilatometer.Comment: 9 pages, 3 figures, submitted to Review of Scientific Instrument

    Two dimensional Dirac fermions and quantum magnetoresistance in CaMnBi2_2

    Full text link
    We report two dimensional Dirac fermions and quantum magnetoresistance in single crystals of CaMnBi2_2. The non-zero Berry's phase, small cyclotron resonant mass and first-principle band structure suggest the existence of the Dirac fermions in the Bi square nets. The in-plane transverse magnetoresistance exhibits a crossover at a critical field BB^* from semiclassical weak-field B2B^2 dependence to the high-field unsaturated linear magnetoresistance (120\sim 120% in 9 T at 2 K) due to the quantum limit of the Dirac fermions. The temperature dependence of BB^* satisfies quadratic behavior, which is attributed to the splitting of linear energy dispersion in high field. Our results demonstrate the existence of two dimensional Dirac fermions in CaMnBi2_2 with Bi square nets.Comment: 5 pages, 4 figure

    Electronic structure of strained InP/GaInP quantum dots

    Full text link
    We calculate the electronic structure of nm scale InP islands embedded in Ga0.51In0.49PGa_{0.51}In_{0.49}P. The calculations are done in the envelope approximation and include the effects of strain, piezoelectric polarization, and mixing among 6 valence bands. The electrons are confined within the entire island, while the holes are confined to strain induced pockets. One pocket forms a ring at the bottom of the island near the substrate interface, while the other is above the island in the GaInP. The two sets of hole states are decoupled. Polarization dependent dipole matrix elements are calculated for both types of hole states.Comment: Typographical error corrected in strain Hamiltonia

    Magnetostriction in the Bose-Einstein Condensate quantum magnet NiCl2-4SC(NH2)2

    Full text link
    The quantum magnet NiCl2_2-4SC(NH2_2)2_2 is a candidate for observing Bose-Einstein Condensation of spin degrees of freedom in applied magnetic fields. An XY antiferromagnetic ordered state occurs in a dome-shaped region of the temperature-field phase diagram between Hc1_{c1} = 2.1 T and Hc2_{c2} = 12.6 T and below 1.2 K. BEC corresponds to the field-induced quantum phase transition into the ordered state. We investigate magnetostriction in single crystals of this compound at dilution refrigerator temperatures in magnetic fields up to 18 T, and as a function of magnetic field angle. We show that significant changes in the lattice parameters are induced by magnetic fields, and argue that these result from antiferromagnetic couplings between the Ni spins along the tetragonal c-axis. The magnetic phase diagram as a function of temperature, field, and field angle can be extracted from these data. We discuss the implications of these results to Bose-Einstein Condensation in this system.Comment: Submitted to Journal of Applied Physic

    Photoelectron spectra of aluminum cluster anions: Temperature effects and ab initio simulations

    Full text link
    Photoelectron (PES) spectra from aluminum cluster anions (from 12 to 15 atoms) at various temperature regimes, were studied using ab-initio molecular dynamics simulations and experimentally. The calculated PES spectra, obtained via shifting of the simulated electronic densities of states by the self-consistently determined values of the asymptotic exchange-correlation potential, agree well with the measured ones, allowing reliable structural assignments and theoretical estimation of the clusters' temperatures.Comment: RevTex, 3 gif figures. Scheduled for Oct 15, 1999, issue of Phys. Rev. B as Rapid Communicatio
    corecore