3,684 research outputs found

    Effects of non-equilibrated topological charge distributions on pseudoscalar meson masses and decay constants

    Full text link
    We study the effects of failure to equilibrate the squared topological charge Q2Q^2 on lattice calculations of pseudoscalar masses and decay constants. The analysis is based on chiral perturbation theory calculations of the dependence of these quantities on the QCD vacuum angle θ\theta. For the light-light partially quenched case, we rederive the known chiral perturbation theory results of Aoki and Fukaya, but using the nonperturbatively-valid chiral theory worked out by Golterman, Sharpe and Singleton, and by Sharpe and Shoresh. We then extend these calculations to heavy-light mesons. Results when staggered taste-violations are important are also presented. The derived Q2Q^2 dependence is compared to that of simulations using the MILC collaboration's ensembles of lattices with four flavors of HISQ dynamical quarks. We find agreement, albeit with large statistical errors. These results can be used to correct for the leading effects of unequilibrated Q2Q^2, or to make estimates of the systematic error coming from the failure to equilibrate Q2Q^2. In an appendix, we show that the partially quenched chiral theory may be extended beyond a lower bound on valence masses discovered by Sharpe and Shoresh. Subtleties occurring when a sea-quark mass vanishes are discussed in another appendix.Comment: 46 pages, 5 figures; added section on the effect of staggered taste violations and made other improvements for clarity. Version to be published in Phys. Rev.

    Bayesian Analysis of Many-Pole Fits of Hadron Propagators in Lattice QCD

    Get PDF
    We use Bayes' probability theorem to analyze many-pole fits of hadron propagators. An alternative method of estimating values and uncertainties of the fit parameters is offered, which has certain advantages over the conventional methods. The probability distribution of the parameters of a fit is calculated. The relative probability of various models is calculated.Comment: 4 pages, 6 figures, Latex with espcrc2.sty, uuencoded compressed tar file contains 7 Latex files: 1 with the paper and 6 with the figures. Talk presented at LATTICE96(spectrum

    The strange quark condensate in the nucleon in 2+1 flavor QCD

    Full text link
    We calculate the "strange quark content of the nucleon", , which is important for interpreting the results of some dark matter detection experiments. The method is to evaluate quark-line disconnected correlations on the MILC lattice ensembles, which include the effects of dynamical strange quarks. After continuum and chiral extrapolations, the result is <N |s s_bar |N> = 0.69 +- 0.07(statistical) +- 0.09(systematic), in the modified minimal subtraction scheme (2 GeV), or for the renormalization scheme invariant form, m_s partial{M_N}/partial{m_s} = 59(6)(8) MeV.Comment: Added figures and references, especially for fit range choice. Other changes for clarity. Version to appear in publicatio

    High density QCD with static quarks

    Get PDF
    We study lattice QCD in the limit that the quark mass and chemical potential are simultaneously made large, resulting in a controllable density of quarks which do not move. This is similar in spirit to the quenched approximation for zero density QCD. In this approximation we find that the deconfinement transition seen at zero density becomes a smooth crossover at any nonzero density, and that at low enough temperature chiral symmetry remains broken at all densities.Comment: LaTeX, 18 pages, uses epsf.sty, postscript figures include

    Fast computation of magnetostatic fields by Non-uniform Fast Fourier Transforms

    Get PDF
    The bottleneck of micromagnetic simulations is the computation of the long-ranged magnetostatic fields. This can be tackled on regular N-node grids with Fast Fourier Transforms in time N logN, whereas the geometrically more versatile finite element methods (FEM) are bounded to N^4/3 in the best case. We report the implementation of a Non-uniform Fast Fourier Transform algorithm which brings a N logN convergence to FEM, with no loss of accuracy in the results

    Chiral nature of magnetic monopoles in artificial spin ice

    Full text link
    Micromagnetic properties of monopoles in artificial kagome spin ice systems are investigated using numerical simulations. We show that micromagnetics brings additional complexity into the physics of these monopoles that is, by essence, absent in spin models: besides a fractionalized classical magnetic charge, monopoles in the artificial kagome ice are chiral at remanence. Our simulations predict that the chirality of these monopoles can be controlled without altering their charge state. This chirality breaks the vertex symmetry and triggers a directional motion of the monopole under an applied magnetic field. Our results also show that the choice of the geometrical features of the lattice can be used to turn on and off this chirality, thus allowing the investigation of chiral and achiral monopoles.Comment: 10 pages, 4 figure

    Critical Behavior at the Chiral Phase Transition

    Get PDF
    Quantum chromodynamics with two zero mass flavors is expected to exhibit a phase transition with O(4) critical behavior. Fixing the universality class is important for phenomenology and for facilitating the extrapolation of simulation data to physical quark mass values. At Lattice '96 the Tsukuba and Bielefeld groups reported results from new simulations with dynamical staggered quarks at Nt=4N_t = 4, which suggested a departure from the expected critical behavior. We report observations of similar deviations and discuss efforts in progress to understand this phenomenon.Comment: 3 pp, LaTeX with 6 encapsulated Postscript figures. Lattice '97 proceeding
    corecore