19 research outputs found

    Enrichment of Pluripotent Stem Cell-Derived Hepatocyte-Like Cells by Ammonia Treatment

    Get PDF
    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are potential resources for the regeneration of defective organs, including the liver. However, some obstacles must be overcome before this becomes reality. Undifferentiated cells that remain following differentiation have teratoma-forming potential. Additionally, practical applications require a large quantity of differentiated cells, so the differentiation process must be economical. Here we describe a DNA microarray-based global analysis of the gene expression profiles of differentiating human pluripotent stem cells. We identified differences and commonalities among six human pluripotent stem cell lines: the hESCs KhES1, KhES2, KhES3, and H1, and the iPSCs 201B7 and 243G1. Embryoid bodies (EBs) formed without requiring supplementation with inducing factors. EBs also expressed some liver-specific metabolic genes including the ammonia-metabolizing enzymes glutamine synthetase and carbamoyl-phosphate synthase 1. Real-time PCR analysis revealed hepatocyte-like differentiation of EBs treated with ammonia in Lanford medium. Analysis of DNA microarray data suggested that hepatocyte-like cells were the most abundant population in ammonia-treated cells. Furthermore, expression levels of undifferentiated pluripotent stem cell markers were drastically reduced, suggesting a reduced teratoma-forming capacity. These results indicate that treatment of EBs with ammonia in Lanford medium may be an effective inducer of hepatic differentiation in absence of expensive inducing factors

    Mammalian Homolog of Drosophila Tumor Suppressor Lethal (2) Giant Larvae Interacts with Basolateral Exocytic Machinery in Madin-Darby Canine Kidney Cells

    Get PDF
    The Drosophila tumor suppressor protein lethal (2) giant larvae [l(2)gl] is involved in the establishment of epithelial cell polarity during development. Recently, a yeast homolog of the protein has been shown to interact with components of the post-Golgi exocytic machinery and to regulate a late step in protein secretion. Herein, we characterize a mammalian homolog of l(2)gl, called Mlgl, in the epithelial cell line Madin-Darby canine kidney (MDCK). Consistent with a role in cell polarity, Mlgl redistributes from a cytoplasmic localization to the lateral membrane after contact-naive MDCK cells make cell-cell contacts and establish a polarized phenotype. Phosphorylation within a highly conserved region of Mlgl is required to restrict the protein to the lateral domain, because a recombinant phospho-mutant is distributed in a nonpolar manner. Membrane-bound Mlgl from MDCK cell lysates was coimmunoprecipitated with syntaxin 4, a component of the exocytic machinery at the basolateral membrane, but not with other plasma membrane soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins that are either absent from or not restricted to the basolateral membrane domain. These data suggest that Mlgl contributes to apico-basolateral polarity by regulating basolateral exocytosis

    Use of Chromatin Immunoprecipitation To Clone Novel E2F Target Promoters

    Get PDF
    We have taken a new approach to the identification of E2F-regulated promoters. After modification of a chromatin immunoprecipitation assay, we cloned nine chromatin fragments which represent both strong and weak in vivo E2F binding sites. Further characterization of three of the cloned fragments revealed that they are bound in vivo not only by E2Fs but also by members of the retinoblastoma tumor suppressor protein family and by RNA polymerase II, suggesting that these fragments represent promoters regulated by E2F transcription complexes. In fact, database analysis indicates that all three fragments correspond to genomic DNA located just upstream of start sites for previously identified mRNAs. One clone, ChET 4, corresponds to the promoter region for beclin 1, a candidate tumor suppressor protein. We demonstrate that another of the clones, ChET 8, is strongly bound by E2F family members in vivo but does not contain a consensus E2F binding site. However, this fragment functions as a promoter whose activity can be repressed by E2F1. Finally, we demonstrate that the ChET 9 promoter contains a consensus E2F binding site, can be activated by E2F1, and drives expression of an mRNA that is upregulated in colon and liver tumors. Interestingly, the characterized ChET promoters do not display regulation patterns typical of known E2F target genes in a U937 cell differentiation system. In summary, we have provided evidence that chromatin immunoprecipitation can be used to identify E2F-regulated promoters which contain both consensus and nonconsensus binding sites and have shown that not all E2F-regulated promoters show identical expression profiles
    corecore