334 research outputs found
Evaluation of methods for seismic analysis of mixed-oxide fuel fabrication plants
Guidelines are needed for selecting appropriate methods of structural analyses to evaluate the seismic hazard of mixed-oxide fuel fabrication plants. This study examines the different available methods and their applicability to fabrication plants. These results should provide a basis for establishing guidelines recommending methods of analysis to ensure safe design against seismic hazards. Using the Westinghouse Recycle Fuels Plant as representative of future mixed-oxide fuel fabrication plants, critical structures and equipment (systems, components, and piping/ducting) were identified. These included the manufacturing building and 11 different pieces of equipment. After examination of the dynamic response characteristics of the building and the different methods available to analyze equipment, appropriate methods of analyses were recommended. Because critical equipment analysis and test methods generally use floor-response spectra as their seismic input loading, several methods used to generate floor spectra were also examined. These include the time-history approach and the Kapur and Biggs approximate methods. The examination included the effect of site characteristics and both horizontal and vertical structural response. (auth
Recommended from our members
Seismic Safety Study
During the past three decades, the Laboratory has been proactive in providing a seismically safe working environment for its employees and the general public. Completed seismic upgrades during this period have exceeded $30M with over 24 buildings structurally upgraded. Nevertheless, seismic questions still frequently arise regarding the safety of existing buildings. To address these issues, a comprehensive study was undertaken to develop an improved understanding of the seismic integrity of the Laboratory's entire building inventory at the Livermore Main Site and Site 300. The completed study of February 2005 extended the results from the 1998 seismic safety study per Presidential Executive Order 12941, which required each federal agency to develop an inventory of its buildings and to estimate the cost of mitigating unacceptable seismic risks. Degenkolb Engineers, who performed the first study, was recontracted to perform structural evaluations, rank order the buildings based on their level of seismic deficiencies, and to develop conceptual rehabilitation schemes for the most seriously deficient buildings. Their evaluation is based on screening procedures and guidelines as established by the Interagency Committee on Seismic Safety in Construction (ICSSC). Currently, there is an inventory of 635 buildings in the Laboratory's Facility Information Management System's (FIMS's) database, out of which 58 buildings were identified by Degenkolb Engineers that require seismic rehabilitation. The remaining 577 buildings were judged to be adequate from a seismic safety viewpoint. The basis for these evaluations followed the seismic safety performance objectives of DOE standard (DOE STD 1020) Performance Category 1 (PC1). The 58 buildings were ranked according to three risk-based priority classifications (A, B, and C) as shown in Figure 1-1 (all 58 buildings have structural deficiencies). Table 1-1 provides a brief description of their expected performance and damage state following a major earthquake, rating the seismic vulnerability (1-10) where the number 10 represents the highest and worst. Buildings in classifications A and B were judged to require the Laboratory's highest attention towards rehabilitation, classification C buildings could defer rehabilitation until a major remodel is undertaken. Strengthening schemes were developed by Degenkolb Engineers for the most seriously deficient A and B classifications (15 total), which the Laboratory's Plant Engineering Department used as its basis for rehabilitation construction cost estimates. A detailed evaluation of Building 2580, a strengthening scheme, and a construction cost estimate are pending. Specific details of the total estimated rehabilitation costs, a proposed 10-year seismic rehabilitation plan, exemption categories by building, DOE performance guidelines, cost comparisons for rehabilitation, and LLNL reports by Degenkolb Engineers are provided in Appendix A. Based on the results of Degenkolb Engineers evaluations, along with the prevailing practice for the disposition of seismically deficient buildings and risk-based evaluations, it is concluded that there is no need to evacuate occupants from these 58 buildings prior to their rehabilitation
Field Estimates of Parentage Reveal Sexually Antagonistic Selection on Body Size in a Population of Anolis Lizards
Sexual dimorphism evolves when selection favors different phenotypic optima between the sexes. Such sexually antagonistic selection creates intralocus sexual conflict when traits are genetically correlated between the sexes and have sexâspecific optima. Brown anoles are highly sexually dimorphic: Males are on average 30% longer than females and 150% heavier in our study population. Viability selection on body size is known to be sexually antagonistic, and directional selection favors large male size whereas stabilizing selection constrains females to remain small. We build on previous studies of viability selection by measuring sexually antagonistic selection using reproductive components of fitness over three generations in a natural population of brown anoles. We estimated the number of offspring produced by an individual that survived to sexual maturity (termed RSV), a measure of individual fitness that includes aspects of both individual reproductive success and offspring survival. We found directional selection on male body size, consistent with previous studies of viability selection. However, selection on female body size varied among years, and included periods of positive directional selection, quadratic stabilizing selection, and no selection. Selection acts differently in the sexes based on both survival and reproduction and sexual conflict appears to be a persistent force in this species
A Unique Concept for Liquid Level and Void Fraction Detection in Severe Fuel Damage Tests
This report describes a direct-contacting liquid level and void fraction detection system that is being developed by Pacific Northwest Laboratory. The measurement technique could be used in the severe fuel damage tests that will be conducted at the Power Burst Facility, Idaho Falls, Idaho, and at the ESSOR reactor, Ispra, Italy. The detection system could also be retrofitted for commercial operating reactors to provide definitive thermal-hydraulic information. The technique can provide unambiguous, real-time data on liquid level and void fraction during normal reactor operation as well as during shutdown and accident conditions
A Machine Learning Method to Infer Fundamental Stellar Parameters from Photometric Light Curves
A fundamental challenge for wide-field imaging surveys is obtaining follow-up
spectroscopic observations: there are > photometrically cataloged
sources, yet modern spectroscopic surveys are limited to ~few x targets.
As we approach the Large Synoptic Survey Telescope (LSST) era, new algorithmic
solutions are required to cope with the data deluge. Here we report the
development of a machine-learning framework capable of inferring fundamental
stellar parameters (Teff, log g, and [Fe/H]) using photometric-brightness
variations and color alone. A training set is constructed from a systematic
spectroscopic survey of variables with Hectospec/MMT. In sum, the training set
includes ~9000 spectra, for which stellar parameters are measured using the
SEGUE Stellar Parameters Pipeline (SSPP). We employed the random forest
algorithm to perform a non-parametric regression that predicts Teff, log g, and
[Fe/H] from photometric time-domain observations. Our final, optimized model
produces a cross-validated root-mean-square error (RMSE) of 165 K, 0.39 dex,
and 0.33 dex for Teff, log g, and [Fe/H], respectively. Examining the subset of
sources for which the SSPP measurements are most reliable, the RMSE reduces to
125 K, 0.37 dex, and 0.27 dex, respectively, comparable to what is achievable
via low-resolution spectroscopy. For variable stars this represents a ~12-20%
improvement in RMSE relative to models trained with single-epoch photometric
colors. As an application of our method, we estimate stellar parameters for
~54,000 known variables. We argue that this method may convert photometric
time-domain surveys into pseudo-spectrographic engines, enabling the
construction of extremely detailed maps of the Milky Way, its structure, and
history
Hectospec, the MMT's 300 Optical Fiber-Fed Spectrograph
The Hectospec is a 300 optical fiber fed spectrograph commissioned at the MMT
in the spring of 2004. A pair of high-speed six-axis robots move the 300 fiber
buttons between observing configurations within ~300 s and to an accuracy ~25
microns. The optical fibers run for 26 m between the MMT's focal surface and
the bench spectrograph operating at R~1000-2000. Another high dispersion bench
spectrograph offering R~5,000, Hectochelle, is also available. The system
throughput, including all losses in the telescope optics, fibers, and
spectrograph peaks at ~10% at the grating blaze in 1" FWHM seeing. Correcting
for aperture losses at the 1.5" diameter fiber entrance aperture, the system
throughput peaks at 17%. Hectospec has proven to be a workhorse
instrument at the MMT. Hectospec and Hectochelle together were scheduled for
1/3 of the available nights since its commissioning. Hectospec has returned
\~60,000 reduced spectra for 16 scientific programs during its first year of
operation.Comment: 68 pages, 28 figures, to appear in December 2005 PAS
Steps Toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. XV. Long-Term Optical Monitoring of NGC 5548
We present the results of three years of ground-based observations of the
Seyfert 1 galaxy NGC 5548, which combined with previously reported data, yield
optical continuum and broad-line H-beta light curves for a total of eight
years. The light curves consist of over 800 points, with a typical spacing of a
few days between observations. During this eight-year period, the nuclear
continuum has varied by more than a factor of seven, and the H-beta emission
line has varied by a factor of nearly six. The H-beta emission line responds to
continuum variations with a time delay or lag of 10-20 days, the precise value
varying somewhat from year to year. We find some indications that the lag
varies with continuum flux in the sense that the lag is larger when the source
is brighter.Comment: 29 pages, 6 figures. Accepted for publication in ApJ (1999 Jan 10
Lack of Evidence for an Association between Iridovirus and Colony Collapse Disorder
Colony collapse disorder (CCD) is characterized by the unexplained losses of large numbers of adult worker bees (Apis mellifera) from apparently healthy colonies. Although infections, toxins, and other stressors have been associated with the onset of CCD, the pathogenesis of this disorder remains obscure. Recently, a proteomics study implicated a double-stranded DNA virus, invertebrate iridescent virus (Family Iridoviridae) along with a microsporidium (Nosema sp.) as the cause of CCD. We tested the validity of this relationship using two independent methods: (i) we surveyed healthy and CCD colonies from the United States and Israel for the presence of members of the Iridovirus genus and (ii) we reanalyzed metagenomics data previously generated from RNA pools of CCD colonies for the presence of Iridovirus-like sequences. Neither analysis revealed any evidence to suggest the presence of an Iridovirus in healthy or CCD colonies
Steps Toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. XVI. A Thirteen-Year Study of Spectral Variability in NGC 5548
We present the final installment of an intensive 13-year study of variations
of the optical continuum and broad H-beta emission line in the Seyfert 1 galaxy
NGC 5548. The data base consists of 1530 optical continuum measurements and
1248 H-beta measurements. The H-beta variations follow the continuum variations
closely, with a typical time delay of about 20 days. However, a year-by-year
analysis shows that the magnitude of emission-line time delay is correlated
with the mean continuum flux. We argue that the data are consistent with the
simple model prediction that the size of the broad-line region is proportional
to the square root of the ionizing luminosity. Moreover, the apparently linear
nature of the correlation between the H-beta response time and the nonstellar
optical continuum arises as a consequence of the changing shape of the
continuum as it varies, specifically with the optical (5100 A) continuum
luminosity proportional to the ultraviolet (1350 A) continuum luminosity to the
0.56 power.Comment: 20 pages plus 4 figures. Accepted for publication in The
Astrophysical Journa
- âŠ