334 research outputs found

    Evaluation of methods for seismic analysis of mixed-oxide fuel fabrication plants

    Get PDF
    Guidelines are needed for selecting appropriate methods of structural analyses to evaluate the seismic hazard of mixed-oxide fuel fabrication plants. This study examines the different available methods and their applicability to fabrication plants. These results should provide a basis for establishing guidelines recommending methods of analysis to ensure safe design against seismic hazards. Using the Westinghouse Recycle Fuels Plant as representative of future mixed-oxide fuel fabrication plants, critical structures and equipment (systems, components, and piping/ducting) were identified. These included the manufacturing building and 11 different pieces of equipment. After examination of the dynamic response characteristics of the building and the different methods available to analyze equipment, appropriate methods of analyses were recommended. Because critical equipment analysis and test methods generally use floor-response spectra as their seismic input loading, several methods used to generate floor spectra were also examined. These include the time-history approach and the Kapur and Biggs approximate methods. The examination included the effect of site characteristics and both horizontal and vertical structural response. (auth

    Field Estimates of Parentage Reveal Sexually Antagonistic Selection on Body Size in a Population of Anolis Lizards

    Get PDF
    Sexual dimorphism evolves when selection favors different phenotypic optima between the sexes. Such sexually antagonistic selection creates intralocus sexual conflict when traits are genetically correlated between the sexes and have sex‐specific optima. Brown anoles are highly sexually dimorphic: Males are on average 30% longer than females and 150% heavier in our study population. Viability selection on body size is known to be sexually antagonistic, and directional selection favors large male size whereas stabilizing selection constrains females to remain small. We build on previous studies of viability selection by measuring sexually antagonistic selection using reproductive components of fitness over three generations in a natural population of brown anoles. We estimated the number of offspring produced by an individual that survived to sexual maturity (termed RSV), a measure of individual fitness that includes aspects of both individual reproductive success and offspring survival. We found directional selection on male body size, consistent with previous studies of viability selection. However, selection on female body size varied among years, and included periods of positive directional selection, quadratic stabilizing selection, and no selection. Selection acts differently in the sexes based on both survival and reproduction and sexual conflict appears to be a persistent force in this species

    A Unique Concept for Liquid Level and Void Fraction Detection in Severe Fuel Damage Tests

    Full text link
    This report describes a direct-contacting liquid level and void fraction detection system that is being developed by Pacific Northwest Laboratory. The measurement technique could be used in the severe fuel damage tests that will be conducted at the Power Burst Facility, Idaho Falls, Idaho, and at the ESSOR reactor, Ispra, Italy. The detection system could also be retrofitted for commercial operating reactors to provide definitive thermal-hydraulic information. The technique can provide unambiguous, real-time data on liquid level and void fraction during normal reactor operation as well as during shutdown and accident conditions

    A Machine Learning Method to Infer Fundamental Stellar Parameters from Photometric Light Curves

    Get PDF
    A fundamental challenge for wide-field imaging surveys is obtaining follow-up spectroscopic observations: there are > 10910^9 photometrically cataloged sources, yet modern spectroscopic surveys are limited to ~few x 10610^6 targets. As we approach the Large Synoptic Survey Telescope (LSST) era, new algorithmic solutions are required to cope with the data deluge. Here we report the development of a machine-learning framework capable of inferring fundamental stellar parameters (Teff, log g, and [Fe/H]) using photometric-brightness variations and color alone. A training set is constructed from a systematic spectroscopic survey of variables with Hectospec/MMT. In sum, the training set includes ~9000 spectra, for which stellar parameters are measured using the SEGUE Stellar Parameters Pipeline (SSPP). We employed the random forest algorithm to perform a non-parametric regression that predicts Teff, log g, and [Fe/H] from photometric time-domain observations. Our final, optimized model produces a cross-validated root-mean-square error (RMSE) of 165 K, 0.39 dex, and 0.33 dex for Teff, log g, and [Fe/H], respectively. Examining the subset of sources for which the SSPP measurements are most reliable, the RMSE reduces to 125 K, 0.37 dex, and 0.27 dex, respectively, comparable to what is achievable via low-resolution spectroscopy. For variable stars this represents a ~12-20% improvement in RMSE relative to models trained with single-epoch photometric colors. As an application of our method, we estimate stellar parameters for ~54,000 known variables. We argue that this method may convert photometric time-domain surveys into pseudo-spectrographic engines, enabling the construction of extremely detailed maps of the Milky Way, its structure, and history

    Hectospec, the MMT's 300 Optical Fiber-Fed Spectrograph

    Full text link
    The Hectospec is a 300 optical fiber fed spectrograph commissioned at the MMT in the spring of 2004. A pair of high-speed six-axis robots move the 300 fiber buttons between observing configurations within ~300 s and to an accuracy ~25 microns. The optical fibers run for 26 m between the MMT's focal surface and the bench spectrograph operating at R~1000-2000. Another high dispersion bench spectrograph offering R~5,000, Hectochelle, is also available. The system throughput, including all losses in the telescope optics, fibers, and spectrograph peaks at ~10% at the grating blaze in 1" FWHM seeing. Correcting for aperture losses at the 1.5" diameter fiber entrance aperture, the system throughput peaks at ∌\sim17%. Hectospec has proven to be a workhorse instrument at the MMT. Hectospec and Hectochelle together were scheduled for 1/3 of the available nights since its commissioning. Hectospec has returned \~60,000 reduced spectra for 16 scientific programs during its first year of operation.Comment: 68 pages, 28 figures, to appear in December 2005 PAS

    Steps Toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. XV. Long-Term Optical Monitoring of NGC 5548

    Get PDF
    We present the results of three years of ground-based observations of the Seyfert 1 galaxy NGC 5548, which combined with previously reported data, yield optical continuum and broad-line H-beta light curves for a total of eight years. The light curves consist of over 800 points, with a typical spacing of a few days between observations. During this eight-year period, the nuclear continuum has varied by more than a factor of seven, and the H-beta emission line has varied by a factor of nearly six. The H-beta emission line responds to continuum variations with a time delay or lag of 10-20 days, the precise value varying somewhat from year to year. We find some indications that the lag varies with continuum flux in the sense that the lag is larger when the source is brighter.Comment: 29 pages, 6 figures. Accepted for publication in ApJ (1999 Jan 10

    Lack of Evidence for an Association between Iridovirus and Colony Collapse Disorder

    Get PDF
    Colony collapse disorder (CCD) is characterized by the unexplained losses of large numbers of adult worker bees (Apis mellifera) from apparently healthy colonies. Although infections, toxins, and other stressors have been associated with the onset of CCD, the pathogenesis of this disorder remains obscure. Recently, a proteomics study implicated a double-stranded DNA virus, invertebrate iridescent virus (Family Iridoviridae) along with a microsporidium (Nosema sp.) as the cause of CCD. We tested the validity of this relationship using two independent methods: (i) we surveyed healthy and CCD colonies from the United States and Israel for the presence of members of the Iridovirus genus and (ii) we reanalyzed metagenomics data previously generated from RNA pools of CCD colonies for the presence of Iridovirus-like sequences. Neither analysis revealed any evidence to suggest the presence of an Iridovirus in healthy or CCD colonies

    Steps Toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. XVI. A Thirteen-Year Study of Spectral Variability in NGC 5548

    Get PDF
    We present the final installment of an intensive 13-year study of variations of the optical continuum and broad H-beta emission line in the Seyfert 1 galaxy NGC 5548. The data base consists of 1530 optical continuum measurements and 1248 H-beta measurements. The H-beta variations follow the continuum variations closely, with a typical time delay of about 20 days. However, a year-by-year analysis shows that the magnitude of emission-line time delay is correlated with the mean continuum flux. We argue that the data are consistent with the simple model prediction that the size of the broad-line region is proportional to the square root of the ionizing luminosity. Moreover, the apparently linear nature of the correlation between the H-beta response time and the nonstellar optical continuum arises as a consequence of the changing shape of the continuum as it varies, specifically with the optical (5100 A) continuum luminosity proportional to the ultraviolet (1350 A) continuum luminosity to the 0.56 power.Comment: 20 pages plus 4 figures. Accepted for publication in The Astrophysical Journa
    • 

    corecore