3,847 research outputs found
Gluon Chain Model of the Confining Force
We develop a picture of the QCD string as a chain of constituent gluons,
bound by attractive nearest-neighbor forces which may be treated
perturbatively. This picture accounts for both Casimir scaling at large N, and
the asymptotic center dependence of the static quark potential. We discuss the
relevance, to the gluon-chain picture, of recent three-loop results for the
static quark potential. A variational framework is presented for computing the
minimal energy and wavefunction of a long gluon chain, which enables us to
derive both the logarithmic broadening of the QCD flux tube (``roughening''),
and the existence of a Luscher -c/R term in the potential.Comment: 25 pages, 5 figures, latex2
Direct Inference from Imprecise Frequencies
It is well known that there are, at least, two sorts of cases where one should not prefer a direct inference based on a narrower reference class, in particular: cases where the narrower reference class is gerrymandered, and cases where one lacks an evidential basis for forming a precise-valued frequency judgment for the narrower reference class. I here propose (1) that the preceding exceptions exhaust the circumstances where one should not prefer direct inference based on a narrower reference class, and (2) that minimal frequency information for a narrower (non-gerrymandered) reference class is sufficient to yield the defeat of a direct inference for a broader reference class. By the application of a method for inferring relatively informative expected frequencies, I argue that the latter claim does not result in an overly incredulous approach to direct inference. The method introduced here permits one to infer a relatively informative expected frequency for a reference class R', given frequency information for a superset of R' and/or frequency information for a sample drawn from R'
Stochastic model of optical variability of BL Lacertae
We use optical photometric and polarimetric data of BL Lacertae that cover a
period of 22 years to study the variability of the source. The long-term
observations are employed for establishing parameters of a stochastic model
consisting of the radiation from a steady polarized source and a number of
variable components with different polarization parameters, proposed by
Hagen-Thorn et al. earlier. We infer parameters of the model from the
observations using numerical simulations based on a Monte Carlo method, with
values of each model parameter selected from a Gaussian distribution. We
determine the best set of model parameters by comparing model distributions to
the observational ones using the chi-square criterion. We show that the
observed photometric and polarimetric variability can be explained within a
model with a steady source of high polarization, ~40%, and with direction of
polarization parallel to the parsec scale jet, along with 10+-5 sources of
variable polarization.Comment: 4 pages, 10 figures, published by Astronomy and Astrophysics; v2:
typos correcte
A theoretical study of microwave beam absorption by a rectenna
The rectenna's microwave power beam absorption limit was theoretically confirmed by two mathematical models descriptive of the microwave absorption process; first one model was based on the current sheet equivalency of a large planar array above a reflector and the second model, which was based on the properties of a waveguide with special imaging characteristics, quantified the electromagnetic modes (field configurations) in the immediate vicinity of a Rectenna element spacing which permit total power beam absorption by preventing unwanted modes from propagating (scattering) were derived using these models. Several factors causing unwanted scattering are discussed
Bag Model for a Link in a Closed Gluonic Chain
The large limit of Yang-Mills gauge theory is the dynamics of a closed
gluonic chain, but this fact does not obviate the inherently strong coupling
nature of the dynamical problem. However, we suggest that a single link in such
a chain might be reasonably described in the quasi-perturbative language of
gluons and their interactions. To implement this idea, we use the MIT bag to
model the physics of a nearest neighbor bond.Comment: 10 pages, LaTe
Field Theory On The World Sheet: Improvements And Generalizations
This article is the continuation of a project of investigating planar phi^3
model in various dimensions. The idea is to reformulate them on the world
sheet, and then to apply the classical (meanfield) approximation, with two
goals: To show that the ground state of the model is a solitonic configuration
on the world sheet, and the quantum fluctuations around the soliton lead to the
formation of a transverse string. After a review of some of the earlier work,
we introduce and discuss several generalizations and new results. In 1+2
dimensions, a rigorous upper bound on the solitonic energy is established. A
phi^4 interaction is added to stabilize the original phi^3 model. In 1+3 and
1+5 dimensions, an improved treatment of the ultraviolet divergences is given.
And significantly, we show that our approximation scheme can be imbedded into a
systematic strong coupling expansion. Finally, the spectrum of quantum
fluctuations around the soliton confirms earlier results: In 1+2 and 1+3
dimensions, a transverse string is formed on the world sheet.Comment: 29 pages, 5 figures, several typos and eqs.(74) and (75) are
corrected, a comment added to section
More On The Connection Between Planar Field Theory And String Theory
We continue work on the connection between world sheet representation of the
planar phi^3 theory and string formation. The present article, like the earlier
work, is based on the existence of a solitonic solution on the world sheet, and
on the zero mode fluctuations around this solution. The main advance made in
this paper is the removal of the cutoff and the transition to the continuum
limit on the world sheet. The result is an action for the modes whose energies
remain finite in this limit (light modes). The expansion of this action about a
dense background of graphs on the world sheet leads to the formation of a
string.Comment: 27 pages, 3 figure
Spontaneous Symmetry Breaking at Infinite Momentum without P+ Zero-Modes
The nonrelativistic interpretation of quantum field theory achieved by
quantization in an infinite momentum frame is spoiled by the inclusion of a
mode of the field carrying p+=0. We therefore explore the viability of doing
without such a mode in the context of spontaneous symmetry breaking (SSB),
where its presence would seem to be most needed. We show that the physics of
SSB in scalar quantum field theory in 1+1 space-time dimensions is accurately
described without a zero-mode.Comment: LaTeX, 8 pages, 3 eps figure
- …
