1,683 research outputs found

    Magnetic aspects of QCD at finite density and temperature

    Full text link
    Some magnetic aspects of QCD are discussed at finite density and temperature. Possibility of spontaneous magnetization is studied within Landau Fermi-liquid theory, and the important roles of the screening effects for gluon propagation are elucidated. Static screening for the longitudinal gluons improves the infrared singularities, while the transverse gluons receive only dynamic screening. The latter property gives rise to a novel non-Fermi-liquid behaviour for the magnetic susceptibility. Appearance of a density-wave state is also discussed in relation to chiral transition, where pseudoscalar condensate as well as scalar one takes a spatially non-uniform form in a chirally invariant way. Accordingly magnetization of quark matter oscillates like spin density wave. A hadron-quark continuity is suggested in this aspect, remembering pion condensation in hadronic phase.Comment: 6 pages, 8 figures, Proc. of INPN2010 to appear in J. Phy

    Propagation of hydrodynamic interactions between particles in a compressible fluid

    Get PDF
    Hydrodynamic interactions are transmitted by viscous diffusion and sound propagation: the temporal evolution of hydrodynamic interactions by both mechanisms is studied by direct numerical simulation in this paper. The hydrodynamic interactions for a system of two particles in a fluid are estimated by the velocity correlation of the particles. In an incompressible fluid, hydrodynamic interactions propagate instantaneously at the infinite speed of sound, followed by the temporal evolution of viscous diffusion. On the other hand, in a compressible fluid, sound propagates at a finite speed, which affects the temporal evolution of the hydrodynamic interactions by the order of magnitude relation between the time scales of viscous diffusion and sound propagation. The hydrodynamic interactions are characterized by introducing the ratio of these time scales as an interactive compressibility factor.Comment: 12 pages, 8 figure

    Direct numerical simulation of dispersed particles in a compressible fluid

    Get PDF
    We present a direct numerical simulation method for investigating the dynamics of dispersed particles in a compressible solvent fluid. The validity of the simulation is examined by calculating the velocity relaxation of an impulsively forced spherical particle with a known analytical solution. The simulation also gives information about the fluid motion, which provides some insight into the particle motion. Fluctuations are also introduced by random stress, and the validity of this case is examined by comparing the calculation results with the fluctuation-dissipation theorem.Comment: 7 pages, 5 figure

    Finite-size effects at the hadron-quark transition and heavy hybrid stars

    Get PDF
    We study the role of finite-size effects at the hadron-quark phase transition in a new hybrid equation of state constructed from an ab-initio Br\"uckner-Hartree-Fock equation of state with the realistic Bonn-B potential for the hadronic phase and a covariant non-local Nambu--Jona-Lasinio model for the quark phase. We construct static hybrid star sequences and find that our model can support stable hybrid stars with an onset of quark matter below 2M2 M_\odot and a maximum mass above 2.17M2.17 M_\odot in agreement with recent observations. If the finite-size effects are taken into account the core is composed of pure quark matter. Provided that the quark vector channel interaction is small, and the finite size effects are taken into account, quark matter appears at densities 2-3 times the nuclear saturation density. In that case the proton fraction in the hadronic phase remains below the value required by the onset of the direct URCA process, so that the early onset of quark matter shall affect on the rapid cooling of the star.Comment: version to match the one published in PR

    Finite size effects on kaonic pasta structures

    Full text link
    Non-uniform structures of mixed phases at the first-order phase transition to charged kaon condensation are studied using a density functional theory within the relativistic mean field model. Including electric field effects and applying the Gibbs conditions in a proper way, we numerically determine density profiles of nucleons, electrons and condensed kaons. Importance of charge screening effects is elucidated and thereby we show that the Maxwell construction is effectively justified. Surface effect is also studied to figure out its effect on the density profiles

    Neutrino Opacities in Neutron Stars with Kaon Condensates

    Get PDF
    The neutrino mean free paths in hot neutron-star matter are obtained in the presence of kaon condensates. The kaon-induced neutrino absorption process, which is allowed only in the presence of kaon condensates, is considered for both nondegenerate and degenerate neutrinos. The neutrino mean free path due to this process is compared with that for the neutrino-nucleon scattering. While the mean free path for the kaon-induced neutrino absorption process is shown to be shorter than the ordinary two-nucleon absorption process by several orders of magnitude when temperature is not very high, the neutrino-nucleon scattering process has still a dominant contribution to the neutrino opacity. Thus, the kaon-induced neutrino absorption process has a minor effect on the thermal and dynamical evolution of protoneutron stars.Comment: 35 pages, 4 figure

    Hadron-quark mixed phase in hyperon stars

    Full text link
    We analyze the different possibilities for the hadron-quark phase transition occurring in beta-stable matter including hyperons in neutron stars. We use a Brueckner-Hartree-Fock approach including hyperons for the hadronic equation of state and a generalized MIT bag model for the quark part. We then point out in detail the differences between Maxwell and Gibbs phase transition constructions including the effects of surface tension and electromagnetic screening. We find only a small influence on the maximum neutron star mass, whereas the radius of the star and in particular its internal structure are more affected.Comment: 11 pages, 9 figure
    corecore