
Title Direct numerical simulation of dispersed particles in a
compressible fluid

Author(s) Tatsumi, Rei; Yamamoto, Ryoichi

Citation Physical Review E (2012), 85(6)

Issue Date 2012-06

URL http://hdl.handle.net/2433/157956

Right ©2012 American Physical Society.

Type Journal Article

Textversion publisher

Kyoto University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyoto University Research Information Repository

https://core.ac.uk/display/39285223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


PHYSICAL REVIEW E 85, 066704 (2012)

Direct numerical simulation of dispersed particles in a compressible fluid
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We present a direct numerical simulation method for investigating the dynamics of dispersed particles in a
compressible solvent fluid. The validity of the simulation is examined by calculating the velocity relaxation of
an impulsively forced spherical particle with a known analytical solution. The simulation also gives information
about the fluid motion, which provides some insight into the particle motion. Fluctuations are also introduced
by random stress, and the validity of this case is examined by comparing the calculation results with the
fluctuation-dissipation theorem.
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I. INTRODUCTION

Particle dispersions have various unique properties, and an
understanding of these properties is important in many fields
of science and engineering. These properties originate from
the dynamics of particles, which are extremely complicated
because of the hydrodynamic interactions among particles
mediated by the motion of the surrounding fluid. Therefore,
several numerical approaches have been formulated to in-
vestigate the dynamics of such dispersions. As one of these
approaches, a direct numerical simulation has been developed,
wherein the hydrodynamic interactions are directly computed
by simultaneously solving for the motion of the fluid and the
motion of the particle. In recent years, we have developed an
efficient direct numerical simulation scheme for dispersions,
which is called the smoothed profile method (SPM) [1,2].
In this scheme, the sharp interface between the fluid and
the particles is replaced by a smoothed interface using a
continuous profile function. The Navier-Stokes equations are
solved for the fluid motion on a fixed square grid, and Newton’s
and Euler’s equations of motion for the particles are solved
simultaneously while considering the momentum exchange
between the fluid and the particles.

The hydrodynamic interactions are transmitted in two ways:
via viscous momentum diffusion and via sound propagation.
The time scale of viscous diffusion over the particle size is
τν = a2/ν, and that of sound propagation is τc = a/c, where
a is the particle radius, ν is the kinematic viscosity, and c

is the speed of sound in the fluid. Here, we will define the
compressibility factor as the ratio of the two time scales:

ε = τc

τν

= ν

ac
. (1)

This factor represents the degree of influence of compressibil-
ity in the dynamics of the dispersed particles. According to
Eq. (1), the compressibility becomes increasingly important
as the particle size decreases. Indeed, the compressibility
of a system has been considered an important factor in
molecular scale dynamics of monatomic liquids studied using
hydrodynamic theories [3,4]. On the other hand, in studies of
particle dispersions, compressibility has rarely been consid-
ered, and an incompressible host fluid is generally assumed.

*tatsumi@cheme.kyoto-u.ac.jp
†ryoichi@cheme.kyoto-u.ac.jp

In the case of a dispersed particle of radius a = 100 nm in
water, for instance, the compressibility factor is evaluated
from ν = 1.0 × 10−6 m2/s and c = 1.5 × 103 m/s to be
ε = 6.7 × 10−3. In many cases, researchers are interested
in phenomena progressing over the time scale of viscous
diffusion or even longer time scales, such as those relat-
ing to shear properties, electrophoresis, and sedimentation.
Therefore, the assumption of an incompressible host fluid is
valid, and most direct numerical simulation methods, including
SPM, have been developed on the premise of incompressible
fluids. However, when we investigate phenomena associated
with sound propagation, such as sonic agglomeration, acoustic
spectroscopy, and electroacoustic measurements, the consid-
eration of compressibility is required.

In the present study, we extend the SPM to compressible
fluids. Some aspects of the dynamics of a single particle
in a compressible fluid have been theoretically analyzed
[3–7], and we compare the simulation results obtained herein
with analytical solutions to determine the accuracy of the
simulation. In particular, we consider the velocity relaxation
of a spherical particle after an impulsive force is added. The
numerical simulation also gives information regarding fluid
motion for which the analytical solution is unknown, and the
dynamics of the particle can be investigated from the viewpoint
of the fluid dynamics. In addition, we also consider a system
with thermal fluctuations by introducing random stress, and the
velocity autocorrelation function is compared with the analyt-
ical solution according to the fluctuation-dissipation theorem.

II. SIMULATION METHOD

A. Equations

In the SPM, the particle-fluid boundary is replaced by a
continuous interface. For this purpose, the smoothed profile
function φ(r,t) ∈ [1,0] is introduced. This function represents
the boundary between the fluid and particle regions: φ = 1
at the particle domain, and φ = 0 at the fluid domain. The
two regions are smoothly connected through thin interfacial
regions with a thickness characterized by ξ . The mathematical
expression of φ can be found in a previous paper [1]. The total
velocity field is defined as

v = (1 − φ)vf + φvp, (2)

where vf (r,t) is the fluid velocity field and vp(r,t) is the
particle velocity field constructed from rigid motions of the
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particles [1,2]. When a compressible host fluid is considered,
the fluid mass density is altered, and we define the mass density
field as

ρf = (1 − φ)ρ. (3)

The auxiliary mass density field ρ(r,t) is defined over the
entire domain. However, the physical fluid mass density
ρf (r,t) must be zero within the particle domain, and this
requirement is satisfied by multiplying by (1 − φ).

The equations governing the dynamics of the dispersion
system are given as hydrodynamic equations with the addition
of a body force. The hydrodynamic equations consist of three
conservation laws concerning mass, momentum, and energy.
The conservation equations of mass and momentum are
given as

∂ρ

∂t
+ ∇ · m = 0, (4)

∂m
∂t

+ ∇ · (mv) = ∇ · σ + ρφ f p, (5)

where m(r,t) = ρ(r,t)v(r,t) is the momentum density field.
We consider a compressible Newtonian fluid, and the stress
tensor is given by

σ = −p I + η[∇v + (∇v)T ] + (
ηv − 2

3η
)

(∇ · v)I, (6)

where p(r,t) is the pressure, η is the shear viscosity, and ηv

is the bulk viscosity. A body force ρφ f p is added so that the
rigidity of the particles is satisfied. Additionally, we assume
a barotropic fluid described by p = p(ρ), and the pressure
gradient is proportional to that of the mass density:

∇p = c2∇ρ. (7)

Equations (4)–(7) are closed for the variables ρ, m, and p;
therefore, energy conservation does not need to be considered.

The motion of the dispersed particles is governed by
Newton’s and Euler’s equations of motion:

Mi

d

dt
V i = f H

i + FC
i ,

d

dt
Ri = V i , (8)

I i · d

dt
�i = NH

i , (9)

where Ri , Vi , and �i are the position, translational velocity,
and rotational velocity of the ith particle, respectively. The
particle has a mass Mi and a moment of inertia I i . The
hydrodynamic force FH

i and torque NH
i are exerted on

the particle by the fluid, and the force FC
i is exerted through

direct interactions among the particles.
The effect of thermal fluctuations on the dynamics of

particles is important when the particle size is on the order of a
micrometer or smaller. Fluctuations are introduced through
a random stress tensor s, which is added in Eq. (6). The
random stress is a stochastic variable satisfying the fluctuation-
dissipation relation [8]:

〈sij (r,t)skl(r ′,t ′)〉 = 2kBT ηijklδ(r ′ − r)δ(t ′ − t), (10)

where kB is the Boltzmann constant, T is the temperature, and

ηijkl = η(δikδjl + δilδjk) + (
ηv − 2

3η
)
δij δkl . (11)

Brownian motion of the dispersed particles is induced by
random stress acting on the fluid. Thermal fluctuations can be

introduced using the Langevin approach, where random forces
are exerted on the particles [9]. However, this approach does
not accurately represent the short-time dynamics of the system
because the time autocorrelation of the hydrodynamic force
acting on the particles is neglected. Therefore, the fluctuating
hydrodynamics approach is more appropriate for investigating
dynamics over the time scale of sound propagation.

B. Simulation procedure

Here, the time-discretized evolution of the equations is
derived. The time step tn represents the nth discretized time,
and the time step change from tn to tn+1 = tn + h will be
considered. The time evolution of the system is determined
through the following steps.

(i) The mass and momentum density changes associated
with sound propagation are calculated as

ρn+1 = ρn −
∫ tn+h

tn

dt∇ · m, (12)

m∗ = mn − c2
∫ tn+h

tn

dt∇ρ. (13)

When we assume a periodic boundary condition and use the
Fourier spectral method, a semi-implicit scheme becomes
feasible [10]. This situation eases the restriction on the time
increment for a small compressibility factor ε.

(ii) The time evolution of the advection and viscous
diffusion terms is calculated as

m∗∗ = m∗ +
∫ tn+h

tn

dt∇ · (τ − mv), (14)

where τ is the dissipative stress given by σ = −p I + τ .
(iii) In concert with the advection of the particle domain,

the position of each dispersed particle evolves as

Rn+1
i = Rn

i +
∫ tn+h

tn

dtV i . (15)

(iv) The hydrodynamic force and torque are derived by con-
sidering the conservation of momentum. The time-integrated
hydrodynamic force and torque are computed as

∫ tn+h

tn

dt FH
i =

∫
d rφn+1

i

(
m∗∗ − ρn+1vn

p

)
, (16)

∫ tn+h

tn

dt NH
i =

∫
d r

[(
r − Rn+1

i

) × φn+1
i

(
m∗∗ − ρn+1vn

p

)]
.

(17)

With these and other forces acting on the particles, the
translational and rotational velocity of each dispersed particle
evolve as

V n+1
i = V n

i + M−1
i

∫ tn+h

tn

dt
(
FH

i + FC
i

)
, (18)

�n+1
i = �n

i + I−1
i ·

∫ tn+h

tn

dt NH
i . (19)
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(v) The updated velocity of the particle region is imposed
on the velocity field as the body force ρφ f p.

mn+1 = m∗∗ +
∫ tn+h

tn

dtρφ f p, (20)

∫ tn+h

tn

dtρφ f p = φn+1
(
ρn+1vn+1

p − m∗∗). (21)

In the case of an incompressible fluid, the pressure is
spontaneously determined by the solenoidal condition of the
velocity field. On the other hand, in the present case, the
pressure or mass density varies independently of the velocity
field.

III. SIMULATION RESULTS

Numerical simulations are performed for a three-
dimensional box with periodic boundary conditions. The space
is divided by meshes of length �, which is the unit length.
The units of the other physical quantities are defined by
combining η = 1 and ρ0 = 1 with �, where ρ0 is the fluid mass
density at equilibrium. The system size is Lx × Ly × Lz =
128 × 128 × 128. The other parameters are set as a = 4,
ξ = 1, ρp = 1, ηv = 0, and h = 0.01, where ρp is the particle
mass density. We performed simulations of the dynamics of
an isolated spherical particle in a fluid in two situations.
First, we investigated the relaxation response of a particle
with an impulsive force. Second, we consider the velocity
autocorrelation function of a particle with thermal fluctuations.

Because the input particle radius a = 4 is not necessarily
equal to the effective hydrodynamic radius a∗ of the particle
represented by the smoothed profile function φ with a fuzzy
interface of thickness ξ , we calculated a∗ from the drag force
acting on the spherical particle moving at velocity V , which is
analytically given by FD = 6πηaK(φ)V , where K(φ) repre-
sents the effect of the periodic boundary condition depending
on the volume fraction of the particle φ [11]. The effective
radius was evaluated as a∗ = 3.87 in the present simulations,
and therefore, the momentum diffusion time is estimated to
be τν = a∗2/ν in this case. When we compare the present
simulation results with the analytical solutions, the corrected
particle density ρ∗

p = (a∗/a)3ρp and the compressibility factor
ε∗ = (a/a∗)ε of the analytical solutions are employed.

A. Relaxation

Let us consider a single spherical particle in a fluid at rest.
We will investigate the relaxation of the particle velocity after
exerting an impulsive force at the center of the particle. The
impulsive force is assumed to be small; in other words, we
will consider the motion of the particle and the fluid for low
Reynolds and Mach numbers. We set the impulsive force to
achieve an initial particle Reynolds number of Rep = 0.01.
Here, we introduce the velocity relaxation function as the
normalized velocity change of the particle as

V (t) = P
M

γ (t), (22)

where P is the impulsive force added at t = 0. The analytical
form of the relaxation function is obtained from a Stokes
approximation (see the Appendix).
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FIG. 1. (Color online) The velocity relaxation function for var-
ious compressibility factors: (a) ε = 0.1, 0.6, (b) 1.0, and 1.5. The
bold lines illustrate the analytic solutions for various compressibility
factors, and the bold dashed double-dotted line shows the analytic
solution for an incompressible fluid.

The simulations are performed with compressibility factors
of ε = 0.1, 0.6, 1.0, and 1.5. The condition ε > 1 implies that
the sound propagation occurs more slowly than the viscous
diffusion, according to the definition given in Eq. (1). The
simulation results agree quite well with the analytical solutions
for all of the compressibility factors ε, as shown in Fig. 1. The
oscillation of t/τν � 2 at ε = 0.1 arises from the periodic
boundary conditions. In this case, the sound pulse arrives at
the end of the system at t/τν = 1.6; afterward, the sound pulse
returns and affects the particle motion.

The velocity relaxation results highlight some remarkable
properties of dynamics in a compressible fluid. In the case
of an incompressible fluid, part of the particle momentum is
instantly carried away by the propagation of the infinite-speed
sound wave, and the particle moves as if its mass were
M∗ = M + Mf /2, where Mf = 4πa3ρ0/3 is the mass of
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FIG. 2. (Color online) Time evolution of the fluid density deviation around the particle. The compressibility factors are (a) ε = 0.1 and
(b) ε = 1.5. The color scale (gray scale) represents negative (darker) to positive (lighter) density deviation. The black circle represents the
particle. The direction of the initial particle velocity is right in these pictures.

the displaced fluid [12]. Therefore, the velocity relaxation
function for an incompressible fluid at the initial time is
γ (+0) = M/M∗; afterward, the particle velocity gradually
decreases because of momentum diffusion in the fluid caused
by its viscosity. Eventually, this decay obeys the power law
t−3/2 in the long-time region. On the other hand, in the case of
a compressible fluid, the velocity relaxation function indicates
that the relaxation due to sound propagation occurs in a finite
time interval. For the compressibility factor ε < 1, the two
relaxation processes are almost separate, and the relaxation
function coincides with that of an incompressible fluid after
the relaxation due to the sound propagation occurs. With an
increase in the compressibility factor, nonmonotonic behavior
is observed in the relaxation function, and finally, inversion of
the particle velocity is observed, as shown in the investigation
of the analytical solution [7].

The density deviation around the particle is shown in Fig. 2,
for which an analytical form has not been obtained. For a
small compressibility ε = 0.1, the sound wave pulse expands
from the particle very quickly, which corresponds to a rapid
decrease in the particle momentum due to sound propagation.
On the other hand, for a large compressibility ε = 1.5, the
sound pulse does not spread. The pulse remains within the
vicinity of the particle and gradually decays through viscous
diffusion. The continuation of high fluid density in front of the
particle is expected to cause backtracking motion.

The velocity field around the particle is also affected by
the compressibility. The velocity field can be formally decom-
posed into two components: an incompressible (solenoidal)
component vI and a compressible component vC. The former
is a solenoidal vector field when ∇ · vI = 0, and the latter
is an irrotational vector field when ∇ × vC = 0. Therefore,
the divergence of the velocity field ∇ · v gives information
regarding the compressible component, and the rotation of

the velocity field ∇ × v gives information pertaining to the
incompressible component. The rotation and divergence of
the velocity field are shown in Figs. 3 and 4, respectively.
The velocity field is also depicted in these figures. An
obvious vortex ring is observed around the particle for a small
compressibility ε = 0.1, while the vortex ring is not clear for
a large compressibility ε = 1.5. The rotation corresponds to
the intensity of the vorticity, and the map in Fig. 3 represents
a pair of vortex rings that is inherent to an incompressible
fluid [13]. The rotation remains nearly constant, regardless of
the compressibility, which indicates that the incompressible
component is not affected by the compressibility. The vector
fields vI and vC influence each other only through the nonlinear
terms in Eqs. (4) and (5); however, in the present simulations,
a low Reynolds number flow is assumed, and the additivity

(a) ε = 0.1
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 0.4

(a) ε = 0.1(a) ε = 0.1 (b) ε = 1.5
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-0.3

-0.2
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 0
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 0.2

 0.3

 0.4

(b) ε = 1.5(b) ε = 1.5

FIG. 3. (Color online) The fluid velocity field and its rotation,
∇ × v, at t/τν = 0.27. The values are normalized by the factor
Ma∗/|P |. The component normal to the figure plane is depicted. The
compressibility factors are (a) ε = 0.1 and (b) ε = 1.5. The color
scale (gray scale) represents negative (darker) to positive (lighter)
rotation. The black circle represents the particle. The direction of the
initial particle velocity is right in these pictures.
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FIG. 4. (Color online) The fluid velocity field and its divergence,
∇ · v, at t/τν = 0.27. The values are normalized by the factor
Ma∗/|P |. The compressibility factors are (a) ε = 0.1 and (b) ε = 1.5.
The color scale (gray scale) represents negative (darker) to positive
(lighter) divergence. The black circle represents the particle. The
direction of the initial particle velocity is right in these pictures.

of the incompressible and compressible components is almost
valid. Therefore, the effect of compressibility is observed only
from the divergence of the velocity field depicted in Fig. 4. The
region of positive divergence represents the source of the flow,
and the negative region represents the sink of the flow. From
the equation of continuity Eq. (4), the divergence is equal to
the reverse sign of the time change rate of the mass density:

∇ · v = − D

Dt
ln ρ. (23)

According to this relation, the source corresponds to the
density decrease, and the sink corresponds to the density
increase. Therefore, the source and the sink move according
to the sound propagation. The propagation speed decreases
with increasing compressibility, which corresponds to the
difference in Fig. 4 related to the compressibility. The pattern
of the total velocity field is described as the superposition of
the vortex convection of the incompressible component vI and
the source-sink flow of the compressible component vC. The
compressibility factor governs the relative time evolution of
each component to produce various flow patterns.

B. Fluctuation

Thermal fluctuations are introduced through random stress
in the host fluid. Computationally, a random stress term
satisfying Eq. (10) is added to the stress tensor given by
Eq. (6). We consider a single particle in the fluid, which
moves randomly as a result of thermal fluctuations. From the
fluctuation-dissipation theorem, the velocity autocorrelation
function of the particle is related to the relaxation function as

γ (t) = M

3kBT
〈V (0) · V (t)〉. (24)

The accuracy of the fluctuating system can be confirmed by
the validity of this relation. In the numerical procedure for
solving a stochastic differential equation, the numerical error
can be larger than that in an ordinary differential equation due
to the truncation error in the time integration of the random
noise term [14]. This error is decreased with the decrease in
the time increment, and we set the smaller time increment
than that in the relaxation case as h = 0.01. The system size
is therefore scaled down to Lx × Ly × Lz = 64 × 64 × 64 to

10
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‹ V

· V
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)› /
3k

B
T

10
-3

10
-2

10
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10
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10
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 = 0.1
 analytical solution (incompressible)
 analytical solution ( = 0.1)

 

FIG. 5. (Color online) The velocity autocorrelation function at
ε = 0.1 and kBT = 10−4. The bold solid line represents the analytic
solution of the velocity relaxation function. The bold dashed double-
dotted line shows the analytic solution for an incompressible fluid.

compensate the increased computational demand due to the
small h explained above. The simulation results for ε = 0.1
are shown in Fig. 5, which shows good agreement with the
analytical solution of the relaxation function. The consistency
between the input and calculated temperatures is also tested.
We can evaluate the temperature from the average kinetic
energy of a fluid or a particle, i.e., kBTf = �3〈ρv2〉/3 or
kBTp = M〈V 2〉/3. We evaluated these two temperatures as
the ratio to the input temperature T . From the fluid motion,
the temperature was evaluated as Tf /T = 1.06, while that
of the particle motion was Tp/T = 0.93. The overestimation
of the fluid temperature Tf is simply due to the truncation error
in the time integration of the stochastic differential equation.
On the other hand, the particle temperature Tp is slightly below
the input temperature T . This discrepancy is considered to be
due to the small numerical inaccuracy introduced in treating
the momentum transfer through the particle-fluid interface
using the SPM. Further improvements on the treatments of
fluctuations in the particle-fluid interfacial region will be
discussed in the future.

IV. CONCLUSION

We extended the SPM to particle dispersions in com-
pressible fluids. The validity of the method was confirmed
by calculating the velocity relaxation function of a single
spherical particle in a compressible fluid. The effect of
compressibility on the velocity relaxation was also observed,
showing two-stage relaxation in a low-compressibility fluid
and backtracking motion in a high-compressibility fluid.
These particle motions were considered by investigating the
fluid density deviation. The propagation of the sound pulse
around the particle is governed by the compressibility, and the
influence of the sound disappears in a low-compressibility fluid
but is maintained in a high-compressibility fluid. The effect of
compressibility on the fluid velocity field was also observed,
which was essentially understood to arise from changes in the
time evolution of the source-sink flow component caused by
the compressibility.
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A simulation of the motion of a single spherical particle in
a fluctuating fluid was also performed. The calculated velocity
autocorrelation function of the particle showed good agree-
ment with the analytical solution of the relaxation function,
and the validity of the fluctuation-dissipation theorem was
confirmed.
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APPENDIX: VELOCITY RELAXATION OF A PARTICLE
IN A COMPRESSIBLE FLUID

The equation of motion for a spherical particle under an
external force E(t) in a compressible fluid can be expressed
by the linear response theory as

M
d

dt
V = −

∫ t

−∞
dsζ (t − s)V (s) + E(t), (A1)

where ζ (t) is the memory kernel of the friction force.
The memory kernel is analytically expressed in frequency
representation. Assuming a stick boundary condition on the

surface of the sphere, the memory kernel is obtained from the
linearized hydrodynamic equations (Stokes approximation)
as [5,6]

ζ̂ (ω) =
∫ ∞

−∞
ζ (t)eiωtdt, (A2)

= 4π

3
ηax2 (1 + x)(9 − 9iy − 2y2) + x2(1 − iy)

2x2(1 − iy) − (1 + x)y2 − x2y2
,

(A3)

with

x = a(−iωρ0/η)1/2, y = aω/c̃, (A4)

and

c̃ =
[
c2 − iω

ρ0

(
4

3
η + ηv

)]1/2

. (A5)

According to Eq. (A1), the particle velocity is linearly
dependent on the external force in frequency representation:

V̂ (ω) = �̂(ω)Ê(ω), (A6)

where the admittance �̂(ω) is given by

�̂(ω) = [−iωM + ζ̂ (ω)]−1. (A7)

In the case that an impulsive force is exerted on the sphere, the
external force in frequency representation is given as a constant
vector Ê(ω) = P , and the velocity relaxation function is given
by γ (t) = M�(t) according to Eq. (22).
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