2,963 research outputs found
Preliminary Results on Contents of Resveratrol in Wine of Organic and Conventional Vineyards
Phytoalexins are compounds synthesised by plants in response to various stresses. In grapevines, these compounds belong to the stilbene family. Several studies have shown that resveratrol is usually triggered by infection of berries by Botrytis cinerea. In organic viticulture, grapevines are usually more stressed by attempted or successful infections of various pathogens than in conventionally grown grapevines. Furthermore, crop protection agents such as acidified clays or copper may trigger defence reactions of the plants. The aim of this study was to verify if differences between organically and conventionally produced wines exist. The preliminary results will be used as a starting point for further research of quality aspects of organic grape-vine production
Necklace-Cloverleaf Transition in Associating RNA-like Diblock Copolymers
We consider a diblock copolymer, whose links are capable
of forming local reversible bonds with each other. We assume that the resulting
structure of the bonds is RNA--like, i.e. topologically isomorphic to a tree.
We show that, depending on the relative strengths of A--A, A--B and B--B
contacts, such a polymer can be in one of two different states. Namely, if a
self--association is preferable (i.e., A--A and B--B bonds are comparatively
stronger than A--B contacts) then the polymer forms a typical randomly branched
cloverleaf structure. On the contrary, if alternating association is preferable
(i.e. A--B bonds are stronger than A--A and B--B contacts) then the polymer
tends to form a generally linear necklace structure (with, probably, some rear
side branches and loops, which do not influence the overall characteristics of
the chain). The transition between cloverleaf and necklace states is studied in
details and it is shown that it is a 2nd order phase transition.Comment: 17 pages, 9 figure
How long does it take to pull an ideal polymer into a small hole?
We present scaling estimates for characteristic times and
of pulling ideal linear and randomly branched polymers of
monomers into a small hole by a force . We show that the absorbtion process
develops as sequential straightening of folds of the initial polymer
configuration. By estimating the typical size of the fold involved into the
motion, we arrive at the following predictions: and , and we also confirm them by
the molecular dynamics experiment.Comment: 4 pages, 3 figure
Relativistic nature of a magnetoelectric modulus of Cr_2O_3-crystals: a new 4-dimensional pseudoscalar and its measurement
Earlier, the magnetoelectric effect of chromium sesquioxide Cr_2O_3 has been
determined experimentally as a function of temperature. One measures the
electric field-induced magnetization on Cr_2O_3 crystals or the magnetic
field-induced polarization. From the magnetoelectric moduli of Cr_2O_3 we
extract a 4-dimensional relativistic invariant pseudoscalar
. It is temperature dependent and of the order of
10^{-4}/Z_0, with Z_0 as vacuum impedance. We show that the new pseudoscalar is
odd under parity transformation and odd under time inversion. Moreover,
is for Cr_2O_3 what Tellegen's gyrator is for two port
theory, the axion field for axion electrodynamics, and the PEMC (perfect
electromagnetic conductor) for electrical engineering.Comment: Revtex, 36 pages, 9 figures (submitted in low resolution, better
quality figures are available from the authors
Flow equations for QED in the light front dynamics
The method of flow equations is applied to QED on the light front. Requiring
that the partical number conserving terms in the Hamiltonian are considered to
be diagonal and the other terms off-diagonal an effective Hamiltonian is
obtained which reduces the positronium problem to a two-particle problem, since
the particle number violating contributions are eliminated. No infrared
divergencies appear. The ultraviolet renormalization can be performed
simultaneously.Comment: 15 pages, Latex, 3 pictures, Submitted to Phys.Rev.
Observation of Surface-Avoiding Waves: A New Class of Extended States in Periodic Media
Coherent time-domain optical experiments on GaAs-AlAs superlattices reveal
the exis-tence of an unusually long-lived acoustic mode at ~ 0.6 THz, which
couples weakly to the environment by evading the sample boundaries. Classical
as well as quantum states that steer clear of surfaces are generally shown to
occur in the spectrum of periodic struc-tures, for most boundary conditions.
These surface-avoiding waves are associated with frequencies outside forbidden
gaps and wavevectors in the vicinity of the center and edge of the Brillouin
zone. Possible consequences for surface science and resonant cavity
ap-plications are discussed.Comment: 16 pages, 3 figure
Mie-resonances, infrared emission and band gap of InN
Mie resonances due to scattering/absorption of light in InN containing
clusters of metallic In may have been erroneously interpreted as the infrared
band gap absorption in tens of papers. Here we show by direct thermally
detected optical absorption measurements that the true band gap of InN is
markedly wider than currently accepted 0.7 eV. Micro-cathodoluminescence
studies complemented by imaging of metallic In have shown that bright infrared
emission at 0.7-0.8 eV arises from In aggregates, and is likely associated with
surface states at the metal/InN interfaces.Comment: 4 pages, 5 figures, submitted to PR
Topological surface state under graphene for two-dimensional spintronics in air
Spin currents which allow for a dissipationless transport of information can
be generated by electric fields in semiconductor heterostructures in the
presence of a Rashba-type spin-orbit coupling. The largest Rashba effects occur
for electronic surface states of metals but these cannot exist but under
ultrahigh vacuum conditions. Here, we reveal a giant Rashba effect ({\alpha}_R
~ 1.5E-10 eVm) on a surface state of Ir(111). We demonstrate that its spin
splitting and spin polarization remain unaffected when Ir is covered with
graphene. The graphene protection is, in turn, sufficient for the spin-split
surface state to survive in ambient atmosphere. We discuss this result along
with evidences for a topological protection of the surface state.Comment: includes supplementary informatio
Noncommutativity from spectral flow
We investigate the transition from second to first order systems. This
transforms configuration space into phase space and hence introduces
noncommutativity in the former. Quantum mechanically, the transition may be
described in terms of spectral flow. Gaps in the energy or mass spectrum may
become large which effectively truncates the available state space. Using both
operator and path integral languages we explicitly discuss examples in quantum
mechanics, (light-front) quantum field theory and string theory.Comment: 31 pages, one Postscript figur
Ultra-precise measurement of optical frequency ratios
We developed a novel technique for frequency measurement and synthesis, based
on the operation of a femtosecond comb generator as transfer oscillator. The
technique can be used to measure frequency ratios of any optical signals
throughout the visible and near-infrared part of the spectrum. Relative
uncertainties of for averaging times of 100 s are possible. Using a
Nd:YAG laser in combination with a nonlinear crystal we measured the frequency
ratio of the second harmonic at 532 nm to the fundamental at
1064 nm, .Comment: 4 pages, 4 figure
- …
