699 research outputs found

    Electron's anomalous magnetic moment effects on electron-hydrogen elastic collisions in the presence of a circularly polarized laser field

    Full text link
    The effect of the electron's anomalous magnetic moment on the relativistic electronic dressing for the process of electron-hydrogen atom elastic collisions is investigated. We consider a laser field with circular polarization and various electric field strengths. The Dirac-Volkov states taking into account this anomaly are used to describe the process in the first order of perturbation theory. The correlation between the terms coming from this anomaly and the electric field strength gives rise to new results, namely the strong dependence of the spinor part of the differential cross section (DCS) with respect to these terms. A detailed study has been devoted to the non relativistic regime as well as the moderate relativistic regime. Some aspects of this dependence as well as the dynamical behavior of the DCS in the relativistic regime have been addressed.Comment: 1 File Revtex + 14 figures ep

    Relativistic electronic dressing in laser-assisted ionization of atomic hydrogen by electron impact

    Full text link
    Within the framework of the coplanar binary geometry where it is justified to use plane wave solutions for the study of the (e,2e)(e,2e) reaction and in the presence of a circularly polarized laser field, we introduce as a first step the DVRPWBA1 (Dirac-Volkov Plane Wave Born Approximation1) where we take into account only the relativistic dressing of the incident and scattered electrons. Then, we introduce the DVRPWBA2 (Dirac-Volkov Plane Wave Born Approximation2) where we take totally into account the relativistic dressing of the incident, scattered and ejected electrons. We then compare the corresponding triple differential cross sections for laser-assisted ionization of atomic hydrogen by electron impact both for the non relativistic and the relativistic regime.Comment: 18 pages, Latex, 7 figure

    Association study of two interleukin-1 gene loci with essential hypertension in a Pakistani Pathan population

    Get PDF
    An association study of IL-1 beta -511C/T and IL-1 RN 86 bp VNTR polymorphisms with essential hypertension was carried out in a sample population of 500 Pakistani Pathan subjects selected randomly, comprising groups of 235 subjects with hypertension and 265 controls. The distribution of both genotypes and alleles was not statistically different in cases and controls. In conclusion, IL-1 beta -511C/T and IL-1 RN 86 bp VNTR do not contribute to the aetiology of essential hypertension in the Pakistani Pathan population investigated here

    Dissipation and Decoherence in Nanodevices: a Generalized Fermi's Golden Rule

    Full text link
    We shall revisit the conventional adiabatic or Markov approximation, which --contrary to the semiclassical case-- does not preserve the positive-definite character of the corresponding density matrix, thus leading to highly non-physical results. To overcome this serious limitation, originally pointed out and partially solved by Davies and co-workers almost three decades ago, we shall propose an alternative more general adiabatic procedure, which (i) is physically justified under the same validity restrictions of the conventional Markov approach, (ii) in the semiclassical limit reduces to the standard Fermi's golden rule, and (iii) describes a genuine Lindblad evolution, thus providing a reliable/robust treatment of energy-dissipation and dephasing processes in electronic quantum devices. Unlike standard master-equation formulations, the dependence of our approximation on the specific choice of the subsystem (that include the common partial trace reduction) does not threaten positivity, and quantum scattering rates are well defined even in case the subsystem is infinitely extended/has continuous spectrum.Comment: 6 pages, 0 figure

    Thermodynamic Geometry Of Charged Rotating BTZ Black Holes

    Full text link
    We study the thermodynamics and the thermodynamic geometries of charged rotating BTZ (CR-BTZ) black holes in (2+1)-gravity. We investigate the thermodynamics of these systems within the context of the Weinhold and Ruppeiner thermodynamic geometries and the recently developed formalism of geometrothermodynamics (GTD). Considering the behavior of the heat capacity and the Hawking temperature, we show that Weinhold and Ruppeiner geometries cannot describe completely the thermodynamics of these black holes and of their limiting case of vanishing electric charge. In contrast, the Legendre invariance imposed on the metric in GTD allows one to describe the CR-BTZ black holes and their limiting cases in a consistent and invariant manner

    Dissipation and Decoherence in Nanodevices: a Generalized Fermi's Golden Rule

    Full text link
    We shall revisit the conventional adiabatic or Markov approximation, which --contrary to the semiclassical case-- does not preserve the positive-definite character of the corresponding density matrix, thus leading to highly non-physical results. To overcome this serious limitation, originally pointed out and partially solved by Davies and co-workers almost three decades ago, we shall propose an alternative more general adiabatic procedure, which (i) is physically justified under the same validity restrictions of the conventional Markov approach, (ii) in the semiclassical limit reduces to the standard Fermi's golden rule, and (iii) describes a genuine Lindblad evolution, thus providing a reliable/robust treatment of energy-dissipation and dephasing processes in electronic quantum devices. Unlike standard master-equation formulations, the dependence of our approximation on the specific choice of the subsystem (that include the common partial trace reduction) does not threaten positivity, and quantum scattering rates are well defined even in case the subsystem is infinitely extended/has continuous spectrum.Comment: 6 pages, 0 figure

    Dissipation and Decoherence in Nanodevices: a Generalized Fermi's Golden Rule

    Full text link
    We shall revisit the conventional adiabatic or Markov approximation, which --contrary to the semiclassical case-- does not preserve the positive-definite character of the corresponding density matrix, thus leading to highly non-physical results. To overcome this serious limitation, originally pointed out and partially solved by Davies and co-workers almost three decades ago, we shall propose an alternative more general adiabatic procedure, which (i) is physically justified under the same validity restrictions of the conventional Markov approach, (ii) in the semiclassical limit reduces to the standard Fermi's golden rule, and (iii) describes a genuine Lindblad evolution, thus providing a reliable/robust treatment of energy-dissipation and dephasing processes in electronic quantum devices. Unlike standard master-equation formulations, the dependence of our approximation on the specific choice of the subsystem (that include the common partial trace reduction) does not threaten positivity, and quantum scattering rates are well defined even in case the subsystem is infinitely extended/has continuous spectrum.Comment: 6 pages, 0 figure

    Chemotactic response and adaptation dynamics in Escherichia coli

    Get PDF
    Adaptation of the chemotaxis sensory pathway of the bacterium Escherichia coli is integral for detecting chemicals over a wide range of background concentrations, ultimately allowing cells to swim towards sources of attractant and away from repellents. Its biochemical mechanism based on methylation and demethylation of chemoreceptors has long been known. Despite the importance of adaptation for cell memory and behavior, the dynamics of adaptation are difficult to reconcile with current models of precise adaptation. Here, we follow time courses of signaling in response to concentration step changes of attractant using in vivo fluorescence resonance energy transfer measurements. Specifically, we use a condensed representation of adaptation time courses for efficient evaluation of different adaptation models. To quantitatively explain the data, we finally develop a dynamic model for signaling and adaptation based on the attractant flow in the experiment, signaling by cooperative receptor complexes, and multiple layers of feedback regulation for adaptation. We experimentally confirm the predicted effects of changing the enzyme-expression level and bypassing the negative feedback for demethylation. Our data analysis suggests significant imprecision in adaptation for large additions. Furthermore, our model predicts highly regulated, ultrafast adaptation in response to removal of attractant, which may be useful for fast reorientation of the cell and noise reduction in adaptation.Comment: accepted for publication in PLoS Computational Biology; manuscript (19 pages, 5 figures) and supplementary information; added additional clarification on alternative adaptation models in supplementary informatio
    corecore