25 research outputs found

    Enteric Microbiome Metabolites Correlate with Response to Simvastatin Treatment

    Get PDF
    Although statins are widely prescribed medications, there remains considerable variability in therapeutic response. Genetics can explain only part of this variability. Metabolomics is a global biochemical approach that provides powerful tools for mapping pathways implicated in disease and in response to treatment. Metabolomics captures net interactions between genome, microbiome and the environment. In this study, we used a targeted GC-MS metabolomics platform to measure a panel of metabolites within cholesterol synthesis, dietary sterol absorption, and bile acid formation to determine metabolite signatures that may predict variation in statin LDL-C lowering efficacy. Measurements were performed in two subsets of the total study population in the Cholesterol and Pharmacogenetics (CAP) study: Full Range of Response (FR), and Good and Poor Responders (GPR) were 100 individuals randomly selected from across the entire range of LDL-C responses in CAP. GPR were 48 individuals, 24 each from the top and bottom 10% of the LDL-C response distribution matched for body mass index, race, and gender. We identified three secondary, bacterial-derived bile acids that contribute to predicting the magnitude of statin-induced LDL-C lowering in good responders. Bile acids and statins share transporters in the liver and intestine; we observed that increased plasma concentration of simvastatin positively correlates with higher levels of several secondary bile acids. Genetic analysis of these subjects identified associations between levels of seven bile acids and a single nucleotide polymorphism (SNP), rs4149056, in the gene encoding the organic anion transporter SLCO1B1. These findings, along with recently published results that the gut microbiome plays an important role in cardiovascular disease, indicate that interactions between genome, gut microbiome and environmental influences should be considered in the study and management of cardiovascular disease. Metabolic profiles could provide valuable information about treatment outcomes and could contribute to a more personalized approach to therapy

    LC-MS/MS Analysis of Bile Acids in In Vitro Samples

    No full text
    Over the last decade, liquid chromatography-tandem mass spectrometry (LC-MS/MS) has become the method of choice for the quantification of bile acids (BA) and their conjugates in different matrices, such as plasma, blood, urine, and cell lysates. Numerous reports have indeed been published describing methods for quantitative determination of bile acids in plasma samples obtained during in vivo studies. However, information on bioanalytical methods suitable for determination of bile acids in in vitro samples remained scarce. Therefore, we presently report a simple and accurate LC-MS/MS method for the quantification of BA in cells (e.g., cultured human hepatocytes) and corresponding cell culture medium, obtained during in vitro experiments.status: publishe

    Serum Bile Acids in Repaired Tetralogy of Fallot: A Marker for Liver and Heart?

    No full text
    Patients with repaired tetralogy of Fallot may develop chronic right ventricular dysfunction and hepatic congestion over time. We hypothesized that bile acid metabolism is altered in repaired tetralogy of Fallot patients and therefore sought to correlate right ventricular indices with serum bile acid levels.Indexed right ventricular end diastolic volume, as assessed by cardiac magnetic-resonance imaging, was classified as 150ml/m2 (Group 3, n = 6) in 29 patients with repaired tetralogy of Fallot. Pulmonary regurgitation fraction and right ventricular ejection fraction were calculated. The serum bile acid profile, including 15 species, in these patients was determined by liquid chromatography coupled with mass spectrometry.Serum bile acid levels increased from Group 1 to Group 3 (2.5 ± 0.7; 4.1 ± 2.5; 6.0 ± 2.8 μmol/l, respectively) with significantly increased bile acid values in Group 3 compared to Group 1 (p≤0.05). In Group 3, but not in Group 1 and 2, a significant increase in glycine-conjugated bile acids was observed. Pulmonary regurgitation fraction increased (12 ± 1; 28 ± 16; 43 ± 3%, Groups 1-3, respectively) and right ventricular ejection fraction decreased (48.4 ± 6.4; 48.5 ± 6.5; 42.1 ± 5.3%, Groups 1-3, respectively) with rising indexed right ventricular end diastolic volume.These preliminary results suggest that serum bile acid levels are positively correlated with indexed right ventricular end-diastolic volume in patients with repaired tetralogy of Fallot; however, this needs to be confirmed in a larger patient cohort

    Aspirated bile: a major host trigger modulating respiratory pathogen colonisation in cystic fibrosis patients

    Get PDF
    Chronic respiratory infections are a leading global cause of morbidity and mortality. However, the molecular triggers that cause respiratory pathogens to adopt persistent and often untreatable lifestyles during infection remain largely uncharacterised. Recently, bile aspiration caused by gastro-oesophageal reflux (GOR) has emerged as a significant complication associated with respiratory disease, and cystic fibrosis (CF) in particular. Based on our previous finding that the physiological concentrations of bile influence respiratory pathogens towards a chronic lifestyle in vitro, we investigated the impact of bile aspiration on the lung microbiome of respiratory patients. Sputum samples (n = 25) obtained from a cohort of paediatric CF patients were profiled for the presence of bile acids using high-resolution liquid chromatography–mass spectrometry (LC-MS). Pyrosequencing was performed on a set of ten DNA samples that were isolated from bile aspirating (n = 5) and non-bile aspirating (n = 5) patients. Both denaturing gradient gel electrophoresis (DGGE) and pyrosequencing revealed significantly reduced biodiversity and richness in the sputum samples from bile aspirating patients when compared with non-aspirating patients. Families and genera associated with the pervasive CF microbiome dominated aspirating patients, while bacteria associated with the healthy lung were most abundant in non-aspirating patients. Bile aspiration linked to GOR is emerging as a major host trigger of chronic bacterial infections. The markedly reduced biodiversity and increased colonisation by dominant proteobacterial CF-associated pathogens observed in the sputum of bile aspirating patients suggest that bile may play a major role in disease progression in CF and other respiratory diseases
    corecore