15 research outputs found

    Efficacy of Commercial Mosquito Traps in Capturing Phlebotomine Sand Flies (Diptera: Psychodidae) in Egypt

    Get PDF
    Four types of commercial mosquito control traps, the Mosquito Magnet Pro (MMP), the Sentinel 360 (S360), the BG-Sentinel (BGS), and the Mega-Catch Ultra (MCU), were compared with a standard Centers for Disease Control and Prevention (CDC) light trap for efficacy in collecting phlebotomine sand flies (Diptera: Psychodidae) in a small farming village in the Nile River Valley 10 km north of Aswan, Egypt. Each trap was baited with either carbon dioxide (CO2) from combustion of butane gas (MMP), dry ice (CDC and BGS traps), light (MCU and S360), or dry ice and light (CDC). Traps were rotated through five sites in a 5×5 Latin square design, repeated four times during the height of the sand fly season (June, August, and September 2007) at a site where 94% of sand flies in past collections were Phlebotomus papatasi (Scopoli). A total of 6,440 sand flies was collected, of which 6,037 (93.7%) were P. papatasi. Of the CO2-baited traps, the BGS trap collected twice as many P. papatasi as the MMP and CDC light traps, and at least three times more P. papatasi than the light-only MCU and S360 traps (P\u3c0.05). Mean numbers (±SE) of P. papatasi captured per trap night were as follows: BGS 142.1 (±45.8) \u3eMMP 56.8 (±9.0) \u3e CDC 52.3 (±6.1) \u3e MCU 38.2 (±6.4) \u3e S360 12.6 (±1.8). Results indicate that several types of commercial traps are suitable substitutes for the CDC light trap in sand fly surveillance programs

    Virus isolations and high population density implicate \u3ci\u3eCulex antennatus\u3c/i\u3e (Becker) (Diptera: Culicidae) as a vector of Rift Valley Fever virus during an outbreak in the Nile Delta of Egypt

    Get PDF
    In June, 2003, Egypt’s hospital-based electronic disease surveillance system began to record increased cases of acute febrile illness from governorates in the Nile Delta. In response to a request for assistance from the Egyptian Ministry of Health and the World Health Organization (WHO), the U.S. Naval Medical Research Unit No. 3 (NAMRU-3) provided assistance in identifying the cause and extent of this outbreak. Testing of human clinical samples (n = 375) from nine governorates in Egypt identified 29 cases of RVF viremia that spanned the period of June to October, and a particular focus of disease in Kafr el Sheikh governorate (7.7% RVF infection rate). Veterinary samples (n = 101) collected during this time in Kafr el Sheikh and screened by immunoassay for RVFV-specific IgM identified probable recent infections in cattle (10.4%) and sheep (5%). Entomologic investigations that focused in rural, rice growing villages in the Sidi Salim District of Kafr el Sheikh during August–September, 2003, collected, identified, and tested hostseeking female mosquitoes for the presence of pathogenic viruses. Three isolates of RVF virus (RVFV) were obtained from 297 tested pools of female mosquitoes and all three RVFV isolates came from Cx. antennatus (Becker). While Cx. pipiens has been considered the primary vector of RVF virus in Egypt and is often the most common man-biting species found, Cx. antennatus was the dominant species captured at the 2003 outbreak location in Kafr el Sheikh governorate. This is the first time that Cx. antennatus has been found naturally infected with RVFV in Egypt
    corecore