56 research outputs found

    Human L1 Retrotransposition Is Associated with Genetic Instability In Vivo

    Get PDF
    AbstractRetrotransposons have shaped eukaryotic genomes for millions of years. To analyze the consequences of human L1 retrotransposition, we developed a genetic system to recover many new L1 insertions in somatic cells. Forty-two de novo integrants were recovered that faithfully mimic many aspects of L1s that accumulated since the primate radiation. Their structures experimentally demonstrate an association between L1 retrotransposition and various forms of genetic instability. Numerous L1 element inversions, extra nucleotide insertions, exon deletions, a chromosomal inversion, and flanking sequence comobilization (called 5′ transduction) were identified. In a striking number of integrants, short identical sequences were shared between the donor and the target site's 3′ end, suggesting a mechanistic model that helps explain the structure of L1 insertions

    MouseIndelDB: a database integrating genomic indel polymorphisms that distinguish mouse strains

    Get PDF
    MouseIndelDB is an integrated database resource containing thousands of previously unreported mouse genomic indel (insertion and deletion) polymorphisms ranging from ∼100 nt to 10 Kb in size. The database currently includes polymorphisms identified from our alignment of 26 million whole-genome shotgun sequence traces from four laboratory mouse strains mapped against the reference C57BL/6J genome using GMAP. They can be queried on a local level by chromosomal coordinates, nearby gene names or other genomic feature identifiers, or in bulk format using categories including mouse strain(s), class of polymorphism(s) and chromosome number. The results of such queries are presented either as a custom track on the UCSC mouse genome browser or in tabular format. We anticipate that the MouseIndelDB database will be widely useful for research in mammalian genetics, genomics, and evolutionary biology. Access to the MouseIndelDB database is freely available at: http://variation.osu.edu/

    A Multiwell Platform for Studying Stiffness-Dependent Cell Biology

    Get PDF
    Adherent cells are typically cultured on rigid substrates that are orders of magnitude stiffer than their tissue of origin. Here, we describe a method to rapidly fabricate 96 and 384 well platforms for routine screening of cells in tissue-relevant stiffness contexts. Briefly, polyacrylamide (PA) hydrogels are cast in glass-bottom plates, functionalized with collagen, and sterilized for cell culture. The Young's modulus of each substrate can be specified from 0.3 to 55 kPa, with collagen surface density held constant over the stiffness range. Using automated fluorescence microscopy, we captured the morphological variations of 7 cell types cultured across a physiological range of stiffness within a 384 well plate. We performed assays of cell number, proliferation, and apoptosis in 96 wells and resolved distinct profiles of cell growth as a function of stiffness among primary and immortalized cell lines. We found that the stiffness-dependent growth of normal human lung fibroblasts is largely invariant with collagen density, and that differences in their accumulation are amplified by increasing serum concentration. Further, we performed a screen of 18 bioactive small molecules and identified compounds with enhanced or reduced effects on soft versus rigid substrates, including blebbistatin, which abolished the suppression of lung fibroblast growth at 1 kPa. The ability to deploy PA gels in multiwell plates for high throughput analysis of cells in tissue-relevant environments opens new opportunities for the discovery of cellular responses that operate in specific stiffness regimes

    Birthweight, Maternal Weight Trajectories and Global DNA Methylation of LINE-1 Repetitive Elements

    Get PDF
    Low birthweight, premature birth, intrauterine growth retardation, and maternal malnutrition have been related to an increased risk of cardiovascular disease, type 2 diabetes mellitus, obesity, and neuropsychiatric disorders later in life. Conversely, high birthweight has been linked to future risk of cancer. Global DNA methylation estimated by the methylation of repetitive sequences in the genome is an indicator of susceptibility to chronic diseases. We used data and biospecimens from an epigenetic birth cohort to explore the association between trajectories of fetal and maternal weight and LINE-1 methylation in 319 mother-child dyads. Newborns with low or high birthweight had significantly lower LINE-1 methylation levels in their cord blood compared to normal weight infants after adjusting for gestational age, sex of the child, maternal age at delivery, and maternal smoking during pregnancy (p = 0.007 and p = 0.036, respectively), but the magnitude of the difference was small. Infants born prematurely also had lower LINE-1 methylation levels in cord blood compared to term infants, and this difference, though small, was statistically significant (p = 0.004). We did not find important associations between maternal prepregnancy BMI or gestational weight gain and global methylation of the cord blood or fetal placental tissue. In conclusion, we found significant differences in cord blood LINE-1 methylation among newborns with low and high birthweight as well as among prematurely born infants. Future studies may elucidate whether chromosomal instabilities or other functional consequences of these changes contribute to the increased risk of chronic diseases among individuals with these characteristics

    The Retrohoming of Linear Group II Intron RNAs in Drosophila melanogaster Occurs by Both DNA Ligase 4–Dependent and –Independent Mechanisms

    Get PDF
    Mobile group II introns are bacterial retrotransposons that are thought to have invaded early eukaryotes and evolved into introns and retroelements in higher organisms. In bacteria, group II introns typically retrohome via full reverse splicing of an excised intron lariat RNA into a DNA site, where it is reverse transcribed by the intron-encoded protein. Recently, we showed that linear group II intron RNAs, which can result from hydrolytic splicing or debranching of lariat RNAs, can retrohome in eukaryotes by performing only the first step of reverse splicing, ligating their 3′ end to the downstream DNA exon. Reverse transcription then yields an intron cDNA, whose free end is linked to the upstream DNA exon by an error-prone process that yields junctions similar to those formed by non-homologous end joining (NHEJ). Here, by using Drosophila melanogaster NHEJ mutants, we show that linear intron RNA retrohoming occurs by major Lig4-dependent and minor Lig4-independent mechanisms, which appear to be related to classical and alternate NHEJ, respectively. The DNA repair polymerase θ plays a crucial role in both pathways. Surprisingly, however, mutations in Ku70, which functions in capping chromosome ends during NHEJ, have only moderate, possibly indirect effects, suggesting that both Lig4 and the alternate end-joining ligase act in some retrohoming events independently of Ku. Another potential Lig4-independent mechanism, reverse transcriptase template switching from the intron RNA to the upstream exon DNA, occurs in vitro, but gives junctions differing from the majority in vivo. Our results show that group II introns can utilize cellular NHEJ enzymes for retromobility in higher organisms, possibly exploiting mechanisms that contribute to retrotransposition and mitigate DNA damage by resident retrotransposons. Additionally, our results reveal novel activities of group II intron reverse transcriptases, with implications for retrohoming mechanisms and potential biotechnological applications

    Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells

    Get PDF
    Human induced pluripotent stem cells (hiPSCs) are capable of unlimited proliferation and can differentiate in vitro to generate derivatives of the three primary germ layers. Genetic and epigenetic abnormalities have been reported by Wissing and colleagues to occur during hiPSC derivation, including mobilization of engineered LINE-1 (L1) retrotransposons. However, incidence and functional impact of endogenous retrotransposition in hiPSCs are yet to be established. Here we apply retrotransposon capture sequencing to eight hiPSC lines and three human embryonic stem cell (hESC) lines, revealing endogenous L1, Alu and SINE-VNTR-Alu (SVA) mobilization during reprogramming and pluripotent stem cell cultivation. Surprisingly, 4/7 de novo L1 insertions are full length and 6/11 retrotransposition events occurred in protein-coding genes expressed in pluripotent stem cells. We further demonstrate that an intronic L1 insertion in the CADPS2 gene is acquired during hiPSC cultivation and disrupts CADPS2 expression. These experiments elucidate endogenous retrotransposition, and its potential consequences, in hiPSCs and hESCs

    The significance of epigenetic alterations in lung carcinogenesis

    Full text link

    Milk: an epigenetic amplifier of FTO-mediated transcription? Implications for Western diseases

    Full text link
    corecore