4,971 research outputs found
USB environment measurements based on full-scale static engine ground tests
Flow turning parameters, static pressures, surface temperatures, surface fluctuating pressures and acceleration levels were measured in the environment of a full-scale upper surface blowing (USB) propulsive lift test configuration. The test components included a flightworthy CF6-50D engine, nacelle, and USB flap assembly utilized in conjunction with ground verification testing of the USAF YC-14 Advanced Medium STOL Transport propulsion system. Results, based on a preliminary analysis of the data, generally show reasonable agreement with predicted levels based on model data. However, additional detailed analysis is required to confirm the preliminary evaluation, to help delineate certain discrepancies with model data, and to establish a basis for future flight test comparisons
Ideal gas sources for the Lemaitre-Tolman-Bondi metrics
New exact solutions emerge by replacing the dust source of the
Lem\^aitre-Tolman-Bondi metrics with a viscous fluid satisfying the monatomic
gas equation of state. The solutions have a consistent thermodynamical
interpretation. The most general transport equation of Extended Irreversible
Thermodynamics is satisfied, with phenomenological coefficients bearing a close
resemblance to those characterizing a non relativistic Maxwell-Bolzmann gas.Comment: 7 pages, Plain TeX with IOP macros, important corrections to previous
version, 3 figures (to appear in Classical and Quantum Gravity, June 1998
Making the Cut: Lattice Kirigami Rules
In this paper we explore and develop a simple set of rules that apply to
cutting, pasting, and folding honeycomb lattices. We consider origami-like
structures that are extinsically flat away from zero-dimensional sources of
Gaussian curvature and one-dimensional sources of mean curvature, and our
cutting and pasting rules maintain the intrinsic bond lengths on both the
lattice and its dual lattice. We find that a small set of rules is allowed
providing a framework for exploring and building kirigami -- folding, cutting,
and pasting the edges of paper.Comment: 5 pages, 5 figure
On the Thermodynamics of Simple Non-Isentropic Perfect Fluids in General Relativity
We examine the consistency of the thermodynamics of irrotational and
non-isentropic perfect fluids complying with matter conservation by looking at
the integrability conditions of the Gibbs-Duhem relation. We show that the
latter is always integrable for fluids of the following types: (a) static, (b)
isentropic (admits a barotropic equation of state), (c) the source of a
spacetime for which , where is the dimension of the orbit of the
isometry group. This consistency scheme is tested also in two large classes of
known exact solutions for which , in general: perfect fluid Szekeres
solutions (classes I and II). In none of these cases, the Gibbs-Duhem relation
is integrable, in general, though specific particular cases of Szekeres class
II (all complying with ) are identified for which the integrability of
this relation can be achieved. We show that Szekeres class I solutions satisfy
the integrability conditions only in two trivial cases, namely the spherically
symmetric limiting case and the Friedman-Roberson-Walker (FRW) cosmology.
Explicit forms of the state variables and equations of state linking them are
given explicitly and discussed in relation to the FRW limits of the solutions.
We show that fixing free parameters in these solutions by a formal
identification with FRW parameters leads, in all cases examined, to unphysical
temperature evolution laws, quite unrelated to those of their FRW limiting
cosmologies.Comment: 29 pages, Plain.Te
Relaxation versus collision times in the cosmological radiative era
We consider the Lema\^{\i}tre-Tolman-Bondi metric with an inhomogeneous viscous fluid source satisfying the equation of state of an interactive mixture of radiation and matter. Assuming conditions prior to the decoupling era, we apply Extended Irreversible Thermodynamcs (EIT) to this mixture. Using the full transport equation of EIT we show that the relaxation time of shear viscosity can be several orders of magnitude larger than the Thomson collision time between photons and electrons. A comparison with the ``truncated'' transport equation for these models reveals that the latter cannot describe properly the decoupling of matter and radiatio
Exact inhomogeneous cosmologies whose source is a radiation-matter mixture with consistent thermodynamics
We derive a new class of exact solutions of Einstein's equations providing a
physically plausible hydrodynamical description of cosmological matter in the
radiative era (), between nucleosynthesis and decoupling.
The solutions are characterized by the Lema\^{\i}tre-Tolman -Bondi metric with
a viscous fluid source, subjected to the following conditions: (a) the
equilibrium state variables satisfy the equation of state of a mixture of an
ultra-relativistic and a non-relativistic ideal gases, where the internal
energy of the latter has been neglected, (b) the particle numbers of the
mixture components are independently conserved, (c) the viscous stress is
consistent with the transport equation and entropy balance law of Extended
Irreversible Thermodynamics, with the coefficient of shear viscosity provided
by Kinetic Theory for the `radiative gas' model. The fulfilment of (a), (b) and
(c) restricts initial conditions in terms of an initial value function,
, related to the average of spatial gradients of the
fluctuations of photon entropy per baryon in the initial hypersurface.
Constraints on the observed anisotropy of the microwave cosmic radiation and
the condition that decoupling occurs at K yield
an estimated value: which can be associated
with a bound on promordial entropy fluctuations. The Jeans mass at decoupling
is of the same order of magnitude as that of baryon dominated perturbation
models ()Comment: LaTeX with revtex (PRD macros). Contains 9 figures (ps). To be
published in Physics Review
Towards a physical interpretation for the Stephani Universes
A physicaly reasonable interpretation is provided for the perfect fluid,
sphericaly symmetric, conformally flat ``Stephani Universes''. The free
parameters of this class of exact solutions are determined so that the ideal
gas relation is identicaly fulfiled, while the full equation of state
of a classical monatomic ideal gas and a matter-radiation mixture holds up to a
good approximation in a near dust, matter dominated regime. Only the models
having spacelike slices with positive curvature admit a regular evolution
domain that avoids an unphysical singularity. In the matter dominated regime
these models are dynamicaly and observationaly indistinguishable from
``standard'' FLRW cosmology with a dust source.Comment: 17 pages, 2 figures, LaTeX with revtex style, submitted to General
Relativity and Gravitatio
- …
