84 research outputs found

    Patterns of Retinal Damage Facilitate Differential Diagnosis between Susac Syndrome and MS

    Get PDF
    Susac syndrome, a rare but probably underdiagnosed combination of encephalopathy, hearing loss, and visual deficits due to branch retinal artery occlusion of unknown aetiology has to be considered as differential diagnosis in various conditions. Particularly, differentiation from multiple sclerosis is often challenging since both clinical presentation and diagnostic findings may overlap. Optical coherence tomography is a powerful and easy to perform diagnostic tool to analyse the morphological integrity of retinal structures and is increasingly established to depict characteristic patterns of retinal pathology in multiple sclerosis. Against this background we hypothesised that differential patterns of retinal pathology facilitate a reliable differentiation between Susac syndrome and multiple sclerosis. In this multicenter cross-sectional observational study optical coherence tomography was performed in nine patients with a definite diagnosis of Susac syndrome. Data were compared with age-, sex-, and disease duration-matched relapsing remitting multiple sclerosis patients with and without a history of optic neuritis, and with healthy controls. Using generalised estimating equation models, Susac patients showed a significant reduction in either or both retinal nerve fibre layer thickness and total macular volume in comparison to both healthy controls and relapsing remitting multiple sclerosis patients. However, in contrast to the multiple sclerosis patients this reduction was not distributed over the entire scanning area but showed a distinct sectorial loss especially in the macular measurements. We therefore conclude that patients with Susac syndrome show distinct abnormalities in optical coherence tomography in comparison to multiple sclerosis patients. These findings recommend optical coherence tomography as a promising tool for differentiating Susac syndrome from MS

    Universal high work function flexible anode for simplified ITO-free organic and perovskite light-emitting diodes with ultra-high efficiency

    Get PDF
    Flexible transparent electrode materials such as conducting polymers, silver nanowires, carbon nanotubes and graphenes are being investigated as possible replacements for conventional brittle inorganic electrodes. However, they have critical drawbacks of low work function (WF), resulting in a high hole injection barrier to an overlying semiconducting layer in simplified organic or organic-inorganic hybrid perovskite light-emitting diodes (OLEDs or PeLEDs). Here, we report a new anode material (AnoHIL) that has multifunction of both an anode and a hole injection layer (HIL) as a single layer. The AnoHIL has easy WF tunability up to 5.8 eV and thus makes ohmic contact without any HIL. We applied our anodes to simplified OLEDs, resulting in very high efficiency (62% ph el(-1) for single and 88% ph el(-1) for tandem). The AnoHIL showed a similar tendency in simplified PeLEDs, implying universal applicability to various optoelectronics. We also demonstrated large-area flexible lightings using our anodes. Our results provide a significant step toward the next generation of high-performance simplified indium tin oxide (ITO)-free light-emitting diodes.

    Predicting creditworthiness in retail banking with limited scoring data

    Get PDF
    The preoccupation with modelling credit scoring systems including their relevance to predicting and decision making in the financial sector has been with developed countries, whilst developing countries have been largely neglected. The focus of our investigation is on the Cameroonian banking sector with implications for fellow members of the Banque des Etats de L'Afrique Centrale (BEAC) family which apply the same system. We apply logistic regression (LR), Classification and Regression Tree (CART) and Cascade Correlation Neural Network (CCNN) in building our knowledge-based scoring models. To compare various models’ performances, we use ROC curves and Gini coefficients as evaluation criteria and the Kolmogorov-Smirnov curve as a robustness test. The results demonstrate that an improvement in terms of predicting power from 15.69% default cases under the current system, to 7.68% based on the best scoring model, namely CCNN can be achieved. The predictive capabilities of all models are rated as at least very good using the Gini coefficient; and rated excellent using the ROC curve for CCNN. Our robustness test confirmed these results. It should be emphasised that in terms of prediction rate, CCNN is superior to the other techniques investigated in this paper. Also, a sensitivity analysis of the variables identifies previous occupation, borrower's account functioning, guarantees, other loans and monthly expenses as key variables in the forecasting and decision making processes which are at the heart of overall credit policy

    Catalysis as a driver for sustainable technologies in Africa – A perspective by the Catalysis Institute at the University of Cape Town

    No full text
    One of the biggest global challenges we are facing today is the provision of affordable, green, and sustainable energy to a growing population. Enshrined in multiple United Nation Sustainable Development Goals – Goal 7: Affordable and Clean Energy; Goal 11: Sustainable Cities and Communities; Goal 12: Responsible Consumption and Production and Goal 13: Climate Action – as well as at the core of the Paris Agreement, it is our task as scientists and engineers to develop innovative technologies that satisfy society's needs while pivoting away from the use of fossil resources. This is a mammoth task with an ambitious timeline. The global development of the industrial sector as we know it is solely based on the exploitation of energy-rich fossil fuels that remain cost-competitive today. However, a gradual change from a market driven to a policy-driven transition allows alternative technologies to make inroads and find applications. One of the most prominently discussed approaches is the Power-to-X (PtX) process envelope. It describes a series of catalytic conversions using only renewable energy, water and captured CO2 to produce green hydrogen, liquid hydrocarbon fuels and chemicals. Especially for sectors that are difficult or impossible to decarbonise, such processes that effectively defossilising the production of energy and goods, represent an important solution.The Catalysis Institute at the University of Cape Town (herein/after referred to as the Catalysis Institute) builds on decades of experience in the individual catalytic processes combined in the PtX concept. In collaboration with our global partners, we are therefore able to develop technologies for the full value chain, considering interdependencies and develop solutions for the African and indeed global society
    • 

    corecore